Encyclopedia of AIDS

Living Edition
| Editors: Thomas J. Hope, Douglas Richman, Mario Stevenson

The Antibody Response to HIV-2

  • Shokouh Makvandi-Nejad
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-9610-6_50-1


Neutralizing antibodies (nAbs) inhibit or neutralize the infectiveness of a virus or bacteria. Broadly neutralizing antibodies (bNAbs) are neutralizing antibodies, which are able to neutralize multiple strains of HIV. Antibody-dependent complement-mediated inactivation (ADCMI) is a cell mediated mechanism whereby an effector cell actively lyses a target cell, which has been bound by a specific antibody. It is one of the mechanisms through which antibodies control HIV infection. Compared to HIV-1-infected patients, more HIV-2-infected subjects develop bNAbs and have a greater magnitude of the intratype antiviral activity of ADCMI.


Many HIV-2-infected patients are able to control the progression of the infection more effectively than most HIV-1-infected subjects. In many HIV-2-infected patients, the viral load remains below limits of detection and CD4 T-cell counts remain normal; therefore, the disease progression may take decades (Marlink et al. 1994). Although...

This is a preview of subscription content, log in to check access.


  1. Bailey JR, Lassen KG, Yang HC, Quinn TC, Ray SC, Blankson JN, Siliciano RF. Neutralizing antibodies do not mediate suppression of human immunodeficiency virus type1 in elite suppressors or selection of plasma virus variants in patients on highly active antiretroviral therapy. J Virol 2006;80:4758–70.Google Scholar
  2. Barroso H, Taveira N. Evidence for negative selective pressure in HIV-2 evolution in vivo. Infect Genet Evol. 2005;5:239–46.CrossRefPubMedGoogle Scholar
  3. Bjorling E, Chiodi F, Utter G, Norrby E. Two neutralizing domains in the V3 region in the envelope glycoprotein gp125 of HIV type 2. J Immunol. 1994;152:1952–9.PubMedGoogle Scholar
  4. Cavaleiro R, Brunn GJ, Albuquerque AS, Victorino RM, Platt JL, Sousa AE. Monocyte-mediated T cell suppression by HIV-2 envelope proteins. Eur J Immunol. 2007;37:3435–44.CrossRefPubMedGoogle Scholar
  5. Gordon SN, Klatt NR, Bosinger SE, Brenchley JM, Milush JM, Engram JC, et al. Severe depletion of mucosal CD4+ T cells in AIDS-free simian immunodeficiency virus-infected sooty mangabeys. J Immunol. 2007;179:3026–34.PubMedCentralCrossRefPubMedGoogle Scholar
  6. Huang ML, Essex M, Lee TH. Localization of immunogenic domains in the human immunodeficiency virus type 2 envelope. J Virol. 1991;65:5073–9.PubMedCentralPubMedGoogle Scholar
  7. Huang CC, Tang M, Zhang MY, Majeed S, Montabana E, Stanfield RL, et al. Structure of a V3-containing HIV-1 gp120 core. Science. 2005;310:1025–8.PubMedCentralCrossRefPubMedGoogle Scholar
  8. Kong R, Li H, Bibollet-Ruche F, Decker JM, Zheng NN, Gottlieb GS, et al. Broad and potent neutralizing antibody responses elicited in natural HIV-2 infection. J Virol. 2012;86:947–60.PubMedCentralCrossRefPubMedGoogle Scholar
  9. Lin G, Bertolotti-Ciarlet A, Haggarty B, Romano J, Nolan KM, Leslie GJ, et al. Replication-competent variants of human immunodeficiency virus type 2 lacking the V3 loop exhibit resistance to chemokine receptor antagonists. J Virol. 2007;81:9956–66.PubMedCentralCrossRefPubMedGoogle Scholar
  10. Marcelino JM, Nilsson C, Barroso H, Gomes P, Borrego P, Maltez F, et al. Envelope-specific antibody response in HIV-2 infection: C2V3C3-specific IgG response is associated with disease progression. AIDS. 2008;22:2257–65.CrossRefPubMedGoogle Scholar
  11. Marcelino JM, Borrego P, Fau-Rocha C, Rocha C, Fau-Barroso H, Barroso H, Fau-Quintas A, Quintas A, Fau-Novo C, Novo C, Fau-Taveira N, et al. Potent and broadly reactive HIV-2 neutralizing antibodies elicited by a vaccinia virus vector prime-C2V3C3 polypeptide boost immunization strategy. J Virol. 2010;84:12429–36.PubMedCentralCrossRefPubMedGoogle Scholar
  12. Marlink R, Kanki P, Thior I, Travers K, Eisen G, Siby T, et al. Reduced rate of disease development after HIV-2 infection as compared to HIV-1. Science. 1994;265:1587–90.CrossRefPubMedGoogle Scholar
  13. Ozkaya Sahin G, Holmgren B, da Silva Z, Nielsen J, Nowroozalizadeh S, Esbjornsson J, Månsson F, Andersson S, Norrgren H, Aaby P, Jansson M, Fenyä EM. Potent intratype neutralizing activity distinguishes human immunodeficiency virus type 2 (HIV-2) from HIV-1. J Virol. 2012;86:961–71.Google Scholar
  14. Palmer E, Martin ML, Goldsmith C, Switzer W. Ultrastructure of human immunodeficiency virus type 2. J Gen Virol 1988;69:1425–9Google Scholar
  15. Ren X, Sodroski J, Yang X. An unrelated monoclonal antibody neutralizes human immunodeficiency virus type 1 by binding to an artificial epitope engineered in a functionally neutral region of the viral envelope glycoproteins. J Virol. 2005;79:5616–24.PubMedCentralCrossRefPubMedGoogle Scholar
  16. Shi Y, Brandin E, Vincic E, Jansson M, Blaxhult A, Gyllensten K, et al. Evolution of human immunodeficiency virus type 2 coreceptor usage, autologous neutralization, envelope sequence and glycosylation. J Gen Virol. 2005;86:3385–96.CrossRefPubMedGoogle Scholar
  17. Skar H, Borrego P, Wallstrom TC, Mild M, Marcelino JM, Barroso H, et al. HIV-2 genetic evolution in patients with advanced disease is faster than that in matched HIV-1 patients. J Virol. 2010;84:7412–5.PubMedCentralCrossRefPubMedGoogle Scholar
  18. Thomas ER, Shotton C, Weiss RA, Clapham PR, McKnight A. CD4-dependent and CD4-independent HIV-2: consequences for neutralization. AIDS. 2003;17:291–300.Google Scholar
  19. van Gils MJ, Euler Z, Schweighardt B, Wrin T, Schuitemaker H. Prevalence of cross-reactive HIV-1-neutralizing activity in HIV-1-infected patients with rapid or slow disease progression. AIDS. 2009;23:2405–14.CrossRefPubMedGoogle Scholar

Copyright information

© Crown Copyright 2015

Authors and Affiliations

  1. 1.Radcliffe Department of MedicineUniversity of OxfordOxfordUK