Encyclopedia of AIDS

Living Edition
| Editors: Thomas J. Hope, Douglas Richman, Mario Stevenson

Maturation Inhibitor

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-9610-6_452-1


Maturation inhibitors are a class of HIV antiretroviral agents currently in development. They act at the viral maturation step, which involves cleavage of the structural protein “Gag,” resulting in the development of an infective viral particle. These agents aim to stop viral maturation by inhibiting Gag cleavage. While not currently in clinical use, they represent a promising new therapeutic class for HIV infection.


Combination antiretroviral agents with distinct mechanisms have become the mainstay of therapy for HIV infection. A variety of drug classes are available for use, as discussed elsewhere in this text, targeting viral enzymes including reverse transcriptase (RT), protease (PR), and integrase (IN). All currently recommended antiretroviral regimens use a combination of the above classes to provide therapeutic effect (Panel on Antiretroviral Guidelines for Adults and Adolescents 2014; Gunthard et al. 2014). The rationale for a combination approach to...


Betulinic Acid Gp41 Envelope Protein Viral Maturation Maturation Inhibitor Cleavage Site Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Adamson CS, Freed EO. Human immunodeficiency virus type 1 assembly, release, and maturation. Adv Pharmacol. 2007;55:347–87.CrossRefPubMedGoogle Scholar
  2. Adamson CS, Ablan SD, Boeras I, et al. In vitro resistance to the human immunodeficiency virus type 1 maturation inhibitor PA-457 (Bevirimat). J Virol. 2006;80(22):10957–71.PubMedCentralCrossRefPubMedGoogle Scholar
  3. Adamson CS, Sakalian M, Salzwedel K, Freed EO. Polymorphisms in Gag spacer peptide 1 confer varying levels of resistance to the HIV- 1 maturation inhibitor bevirimat. Retrovirology. 2010;7:36.PubMedCentralCrossRefPubMedGoogle Scholar
  4. Baichwal V, Austin H, Brown B, et al. Anti-viral characteristics in vitro of a novel maturation inhibitor, MPC-9055. In: Conference on retroviruses and opportunistic infections, Montreal; 2009.Google Scholar
  5. Checkley MA, Luttge BG, Soheilian F, Nagashima K, Freed EO. The capsid-spacer peptide 1 Gag processing intermediate is a dominant-negative inhibitor of HIV-1 maturation. Virology. 2010;400(1):137–44.PubMedCentralCrossRefPubMedGoogle Scholar
  6. Erickson-Viitanen S, Manfredi J, Viitanen P, et al. Cleavage of HIV-1 gag polyprotein synthesized in vitro: sequential cleavage by the viral protease. AIDS Res Hum Retroviruses. 1989;5(6):577–91.CrossRefPubMedGoogle Scholar
  7. Ganser-Pornillos BK, Yeager M, Sundquist WI. The structural biology of HIV assembly. Curr Opin Struct Biol. 2008;18(2):203–17.PubMedCentralCrossRefPubMedGoogle Scholar
  8. Gunthard HF, Aberg JA, Eron JJ, et al. Antiretroviral treatment of adult HIV infection: 2014 recommendations of the International Antiviral Society-USA Panel. JAMA. 2014;312(4):410–25.CrossRefPubMedGoogle Scholar
  9. Haqqani AA, Tilton JC. Entry inhibitors and their use in the treatment of HIV-1 infection. Antiviral Res. 2013;98(2):158–70.CrossRefPubMedGoogle Scholar
  10. Hwang C, Sevinsky H, Ravindran P, et al. Antiviral activity/safety of a second-generation HIV-1 maturation inhibitor. In: Conference on retroviruses and opportunistic infections, Seattle; 2015.Google Scholar
  11. Kanamoto T, Kashiwada Y, Kanbara K, et al. Anti-human immunodeficiency virus activity of YK-FH312 (a betulinic acid derivative), a novel compound blocking viral maturation. Antimicrob Agents Chemother. 2001;45(4):1225–30.PubMedCentralCrossRefPubMedGoogle Scholar
  12. Keller PW, Adamson CS, Heymann JB, Freed EO, Steven AC. HIV-1 maturation inhibitor bevirimat stabilizes the immature Gag lattice. J Virol. 2011;85(4):1420–8.PubMedCentralCrossRefPubMedGoogle Scholar
  13. Krausslich HG, Schneider H, Zybarth G, Carter CA, Wimmer E. Processing of in vitro-synthesized gag precursor proteins of human immunodeficiency virus (HIV) type 1 by HIV proteinase generated in Escherichia coli. J Virol. 1988;62(11):4393–7.PubMedCentralPubMedGoogle Scholar
  14. Li F, Goila-Gaur R, Salzwedel K, et al. PA-457: a potent HIV inhibitor that disrupts core condensation by targeting a late step in Gag processing. Proc Natl Acad Sci U S A. 2003;100(23):13555–60.PubMedCentralCrossRefPubMedGoogle Scholar
  15. Li F, Zoumplis D, Matallana C, et al. Determinants of activity of the HIV-1 maturation inhibitor PA-457. Virology. 2006;356(1–2):217–24.CrossRefPubMedGoogle Scholar
  16. Llibre JM, Rivero A, Rojas JF, et al. Safety, efficacy and indications of prescription of maraviroc in clinical practice: factors associated with clinical outcomes. Antiviral Res. 2015;120:79–84.CrossRefPubMedGoogle Scholar
  17. Lu W, Salzwedel K, Wang D, et al. A single polymorphism in HIV-1 subtype C SP1 is sufficient to confer natural resistance to the maturation inhibitor bevirimat. Antimicrob Agents Chemother. 2011;55(7):3324–9.PubMedCentralCrossRefPubMedGoogle Scholar
  18. Margot NA, Gibbs CS, Miller MD. Phenotypic susceptibility to bevirimat in isolates from HIV-1-infected patients without prior exposure to bevirimat. Antimicrob Agents Chemother. 2010;54(6):2345–53.PubMedCentralCrossRefPubMedGoogle Scholar
  19. Martin DE, Blum R, Wilton J, et al. Safety and pharmacokinetics of bevirimat (PA-457), a novel inhibitor of human immunodeficiency virus maturation, in healthy volunteers. Antimicrob Agents Chemother. 2007a;51(9):3063–6.PubMedCentralCrossRefPubMedGoogle Scholar
  20. Martin DE, Blum R, Doto J, Galbraith H, Ballow C. Multiple-dose pharmacokinetics and safety of bevirimat, a novel inhibitor of HIV maturation, in healthy volunteers. Clin Pharmacokinet. 2007b;46(7):589–98.CrossRefPubMedGoogle Scholar
  21. Martin DE, Galbraith H, Schettler J, Ellis C, Doto J. Pharmacokinetic properties and tolerability of bevirimat and atazanavir in healthy volunteers: an open-label, parallel-group study. Clin Ther. 2008;30(10):1794–805.CrossRefPubMedGoogle Scholar
  22. McCallister S, Lalezari J, Richmond G, et al. HIV-1 Gag polymorphisms determine treatment response to bevirimat (PA-457). Antivir Ther. 2008;13:A10.Google Scholar
  23. Muller B, Anders M, Akiyama H, et al. HIV-1 Gag processing intermediates trans-dominantly interfere with HIV-1 infectivity. J Biol Chem. 2009;284(43):29692–703.PubMedCentralCrossRefPubMedGoogle Scholar
  24. Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of antiretroviral agents in HIV-1 infected adults and adolescents, §What to Start. 2014.Google Scholar
  25. Seclen E, Gonzalez Mdel M, Corral A, de Mendoza C, Soriano V, Poveda E. High prevalence of natural polymorphisms in Gag (CA-SP1) associated with reduced response to bevirimat, an HIV-1 maturation inhibitor. AIDS. 2010;24(3):467–9.CrossRefPubMedGoogle Scholar
  26. Simon V, Ho DD, Abdool Karim Q. HIV/AIDS epidemiology, pathogenesis, prevention, and treatment. Lancet. 2006;368(9534):489–504.PubMedCentralCrossRefPubMedGoogle Scholar
  27. Smith PF, Ogundele A, Forrest A, et al. Phase I and II study of the safety, virologic effect, and pharmacokinetics/pharmacodynamics of single-dose 3-o-(3′,3′-dimethylsuccinyl) betulinic acid (bevirimat) against human immunodeficiency virus infection. Antimicrob Agents Chemother. 2007;51(10):3574–81.PubMedCentralCrossRefPubMedGoogle Scholar
  28. Sundquist WI, Krausslich HG. HIV-1 assembly, budding, and maturation. Cold Spring Harb Perspect Med. 2012;2(7):a006924.PubMedCentralCrossRefPubMedGoogle Scholar
  29. Swanstrom R, Wills JW. Synthesis, assembly, and processing of viral proteins. In: Coffin JM, Hughes SH, Varmus HE, editors. Retroviruses. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 1997.Google Scholar
  30. Temesgen Z, Cainelli F, Poeschla EM, Vlahakis SA, Vento S. Approach to salvage antiretroviral therapy in heavily antiretroviral-experienced HIV-positive adults. Lancet Infect Dis. 2006;6(8):496–507.CrossRefPubMedGoogle Scholar
  31. Van Baelen K, Salzwedel K, Rondelez E, et al. Susceptibility of human immunodeficiency virus type 1 to the maturation inhibitor bevirimat is modulated by baseline polymorphisms in Gag spacer peptide 1. Antimicrob Agents Chemother. 2009;53(5):2185–8.PubMedCentralCrossRefPubMedGoogle Scholar
  32. Verheyen J, Verhofstede C, Knops E, et al. High prevalence of bevirimat resistance mutations in protease inhibitor-resistant HIV isolates. AIDS. 2010;24(5):669–73.CrossRefPubMedGoogle Scholar
  33. Wiegers K, Rutter G, Kottler H, Tessmer U, Hohenberg H, Krausslich HG. Sequential steps in human immunodeficiency virus particle maturation revealed by alterations of individual Gag polyprotein cleavage sites. J Virol. 1998;72(4):2846–54.PubMedCentralPubMedGoogle Scholar
  34. Yebra G, Holguin A. The maturation inhibitor bevirimat (PA-457) can be active in patients carrying HIV type-1 non-B subtypes and recombinants. Antivir Ther. 2008;13(8):1083–5.PubMedGoogle Scholar
  35. Zhou J, Yuan X, Dismuke D, et al. Small-molecule inhibition of human immunodeficiency virus type 1 replication by specific targeting of the final step of virion maturation. J Virol. 2003;78(2):922–9.CrossRefGoogle Scholar
  36. Zhou J, Chen CH, Aiken C. Human immunodeficiency virus type 1 resistance to the small molecule maturation inhibitor 3-O-(3′,3′-dimethylsuccinyl)-betulinic acid is conferred by a variety of single amino acid substitutions at the CA-SP1 cleavage site in Gag. J Virol. 2006;80(24):12095–101.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Division of Infectious DiseasesDepartment of Medicine, Weill Cornell Medical CollegeNew YorkUSA