Encyclopedia of AIDS

Living Edition
| Editors: Thomas J. Hope, Douglas Richman, Mario Stevenson

HIV Compartments and Viral Rebound During Treatment Interruption

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-9610-6_433-1

Definition

One of the main challenging characteristics of HIV is its extensive genetic diversity. This diversity is apparent across geography as represented by differing clades, but on a smaller scale exists within an individual. Viral phylogenetic studies within the same individual have shown diversity and divergence of the HIV virus in the multiple cell types and tissues analyzed. These subpopulations are known as viral quasispecies (Blackard 2012). The local environment present in the tissues influences the evolution of the quasispecies and subsequently impacts cellular tropism (i.e., higher affinity to macrophages from brain-derived virus), affects the response to antiretroviral therapy (ART), and ultimately, could affect eradication strategies.

A compartment has been defined as an anatomical site in which the virus is present, and there is limited exchange of viral genetic information with other sites and may contain compartment-specific viral sequences (Eisele and Siliciano 2012)...

Keywords

Dementia Germinal Posit Washout Neurotoxicity 
This is a preview of subscription content, log in to check access

References

  1. Ait-Khaled M, McLaughlin JE, Johnson MA, Emery VC. Distinct HIV-1 long terminal repeat quasispecies present in nervous tissues compared to that in lung, blood and lymphoid tissues of an AIDS patient. AIDS (London, England). 1995;9:675–83.CrossRefGoogle Scholar
  2. Barnabas R, Celum C. Infectious co-factors in HIV-1 transmission herpes simplex virus type-2 and HIV-1: new insights and interventions. Curr HIV Res. 2012;10(3):228–37.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Blackard J. HIV compartmentalization: a review on a clinically important phenomenon. Curr HIV Res. 2012;10(1):133–42.CrossRefPubMedGoogle Scholar
  4. Blankson JN, Persaud D, Siliciano RF. The challenge of viral reservoirs in HIV-1 infection. Annu Rev Med. 2002;53:557–93.CrossRefPubMedGoogle Scholar
  5. Buzón MJ, Massanella M, Llibre JM, Esteve A, Dahl V, et al. HIV-1 replication and immune dynamics are affected by raltegravir intensification of HAART-suppressed subjects. Nat Med. 2010;16(4):460–5.CrossRefPubMedGoogle Scholar
  6. Canestri A, Lescure FX, Jaureguiberry S, Moulignier A, Amiel C, et al. Discordance between cerebral spinal fluid and plasma HIV replication in patients with neurological symptoms who are receiving suppressive antiretroviral therapy. Clin Infect Dis. 2010;50:773–8.CrossRefPubMedGoogle Scholar
  7. Caniglia EC, Cain LE, Justice A, Tate J, Logan R, et al. Antiretroviral penetration into the CNS and incidence of AIDS-defining neurologic conditions. Neurology. 2014;83(2):134–41.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chomont N, El-Far M, Ancuta P, Trautmann L, Procopio FA, et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med. 2009;15(8):893–900.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chun TW, Nickle DC, Justement JS, Meyers JH, Roby G, et al. Persistence of HIV in gut-associated lymphoid tissue despite long-term antiretroviral therapy. J Infect Dis. 2008;197:714–20.CrossRefPubMedGoogle Scholar
  10. Churchill M, Nath A. Where does HIV hide? A focus on the central nervous system. Curr Opin HIV AIDS. 2013;8:165–9.CrossRefPubMedGoogle Scholar
  11. Coffin J, Swanstrom R. HIV pathogenesis: dynamics and genetics of viral populations and infected cells. Cold Spring Harb Perspect Med. 2013;3:a012526.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Craigo JK, Gupta P. HIV-1 in genital compartments: vexing viral reservoirs. Curr Opin HIV AIDS. 2006;1:97–102.PubMedGoogle Scholar
  13. Cribbs SK, Lennox J, Caliendo A, Brown LA, Guidot DM. Healthy HIV-1-infected individuals on HAART harbor HIV-1 in their alveolar macrophages. AIDS Res Hum Retroviruses. 2015;31(1):64–70.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dahl V, Gisslen M, Hagberg L, Peterson J, Shao W, et al. An example of genetically distinct HIV type 1 variants in cerebrospinal fluid and plasma during suppressive therapy. J Infect Dis. 2014;209:1618–22.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Davey RT, Bhat N, Yoder C, Chun TW, Metcalf JA, et al. HIV-1 and T cell dynamics after interruption of highly active antiretroviral therapy (HAART) in patients with a history of sustained viral suppression. Proc Natl Acad Sci U S A. 1999;96(26):15109–14.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dunfee RL, Thomas ER, Gorry PR, Wang J, Taylor J, et al. The HIV Env variant N283 enhances macrophage tropism and is associated with brain infection and dementia. Proc Natl Acad Sci U S A. 2006;103(41):15160–5.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Eisele E, Siliciano RF. Redefining the viral reservoirs that prevent HIV-1 eradication. Immunity. 2012;37(3):377–88.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Eriksson S, Graf EH, Dahl V, Strain MC, Yukl SA, et al. Comparative analysis of measures of viral reservoirs in HIV-1 eradication studies. PLoS Pathog. 2013;9(2):e1003174.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Finzi D, Blankson J, Siliciano JD, Margolick JB, Chadwick K, et al. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat Med. 1999;5(5):512–7.CrossRefPubMedGoogle Scholar
  20. Fletcher CV, Staskus K, Wietgrefe SW, Rothenberger M, Reilly C, et al. Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues. Proc Natl Acad Sci U S A. 2014;111(6):2307–12.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gandhi RT, Zheng L, Bosch RJ, Chan ES, Margolis DM, et al. The effect of raltegravir intensification on low-level residual viremia in HIV-infected patients on antiretroviral therapy: a randomized controlled trial. PLoS Med. 2010;7(8):e1000321.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gianella S, Smith DM, Vargas MV, Little SJ, Richman DD, et al. Shedding of HIV and human herpesviruses in the semen of effectively treated HIV-1-infected men who have sex with men. Clin Infect Dis. 2013;57(3):441–7.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Golden MP, Kim S, Hammer SM, Ladd EA, Schaffer PA, et al. Activation of human immunodeficiency virus by herpes simplex virus. J Infect Dis. 1992;166(3):494–9.CrossRefPubMedGoogle Scholar
  24. Gonzalez-Perez MP, O’Connell O, Lin R, Sullivan WM, Bell J, et al. Independent evolution of macrophage-tropism and increased charge between HIV-1 R5 envelopes present in brain and immune tissue. Retrovirology. 2012;9:20.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Haase AT. Population biology of HIV-1 infection: viral and CD4+ T cell demographics and dynamics in lymphatic tissues. Annu Rev Immunol. 1999;17:625–56.CrossRefPubMedGoogle Scholar
  26. Hamlyn E, Ewings FM, Porter K, Cooper DA, Tambussi G, et al. Plasma HIV viral rebound following protocol-indicated cessation of ART commenced in primary and chronic HIV infection. PLoS One. 2012;7(8):e43754.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hatano H, Strain MC, Scherzer R, Bacchetti R, Wentworth D, et al. Increase in 2 – Long terminal repeat circles and decrease in D-dimer after raltegravir intensification in patients with treated HIV infection: a randomized. Placebo Controlled Trial J Infect Dis. 2013;208:1436–42.PubMedGoogle Scholar
  28. Ho YC, Shan L, Hosmane NN, Wang J, Laskey SB, et al. Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell. 2013;155(3):540–51.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hocqueloux L, Prazuck T, Avettand-Fenoel V, Lafeuillade A, Cardon B, et al. Long-term immunovirologic control following antiretroviral therapy interruption in patients treated at the time of primary HIV-1 infection. AIDS (London, England). 2010;24(10):1598–601.CrossRefGoogle Scholar
  30. Horiike M, Iwami S, Kodama M, Sato A, Watanabe Y, et al. Lymph nodes harbor viral reservoirs that cause rebound of plasma viremia in SIV-infected macaques upon cessation of combined antiretroviral therapy. Virology. 2012;423(2):107–18.CrossRefPubMedGoogle Scholar
  31. Joos B, Fischer M, Kuster H, Pillai S, Wong JK, et al. HIV rebounds from latently infected cells, rather than from continuing low-level replication. Proc Natl Acad Sci USA. 2008;105(43):16725–16730.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kearney MF, Spindler J, Shao W, Yu S, Anderson EM, et al. Lack of detectable HIV-1 molecular evolution during suppressive antiretroviral therapy. PLoS Pathog. 2014;10(3):e1004010.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kearney MF, Wiegand A, Shao W, Coffin JM, Mellors JW, et al. Origin of rebound plasma HIV includes cells with identical proviruses that are transcriptionally active before stopping antiretroviral therapy. J Virol. 2015;90(3):1369–76.Google Scholar
  34. Kemal KS, Foley B, Burger H, Anastos K, Minkoff H, et al. HIV-1 in genital tract and plasma of women: compartmentalization of viral sequences, coreceptor usage, and glycosylation. Proc Natl Acad Sci U S A. 2003;100:12972–7.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Letendre S, Marquie-Beck J, Capparelli E, Best B, Clifford D, et al. Validation of the CNS penetration-effectiveness rank for quantifying antiretroviral penetration into the central nervous system. Arch Neurol. 2008;65(1):65–70.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lewin SR, Rouzioux C. HIV cure and eradication: how will we get from the laboratory to effective clinical trials? AIDS (London, England). 2011;25:885–97.CrossRefGoogle Scholar
  37. Li JZ, Etemad B, Ahmed H, Aga E, Bosch RJ, et al. The size of the expressed HIV reservoir predicts timing of viral rebound after treatment interruption. AIDS (London, England). 2016;30(3):343–53.Google Scholar
  38. Maggiolo F, Callegaro A, Cologni G, Bernardini C, Velenti D, et al. Ultrasensitive assessment of residual low-level HIV viremia in HAART-treated patients and risk of virological failure. J Acquir Immune Defic Syndr. 2012;60(5):474–82.CrossRefGoogle Scholar
  39. Maldarelli F, Wu X, Su L, Simonetti FR, Shao W, et al. HIV latency. Specific HIV integration sites are linked to clonal expansion and persistence of infected cells. Science. 2014;345(6193):179–83.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Marconi V, Bonhoeffer S, Paredes R, Lu J, Hoh R, et al. Viral dynamics and in vivo fitness of HIV-1 in the presence and absence of enfuvirtide. J Acquir Immune Defic Syndr. 2008;48(5):572–6.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Masson L, Mlisana K, Little F, Werner L, Mkhize NN, et al. Defining genital tract cytokine signatures of sexually transmitted infection and bacterial vaginosis in women at high risk of HIV infection: a cross-sectional study. Sex Transm Infect. 2014;90:580–7.CrossRefPubMedGoogle Scholar
  42. Masson L, Passmore JS, Liebenberg LJ, Werner L, Baxter C, et al. Genital inflammation and the risk of HIV acquisition in women. Clin Infect Dis. 2015;61(2):260–9.CrossRefPubMedGoogle Scholar
  43. Nickle DC, Shriner D, Mittler JE, Frenkel LM, Mullins JI. Importance and detection of virus reservoirs and compartments of HIV infection. Curr Opin Microbiol. 2003;6(4):410–6.CrossRefPubMedGoogle Scholar
  44. Olivieri KC, Agopian KA, Mukerji J, Gabuzda D. Evidence of adaptive evolution at the divergence between lymphoid and brain HIV-1 nef genes. AIDS Res Hum Retroviruses. 2010;26(4):495–500.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Pantaleo G, Graziosi C, Butini L, Pizzo PA, Schnittman SM, et al. Lymphoid organs function as major reservoirs for human immunodeficiency virus. Proc Natl Acad Sci U S A. 1991;88(21):9838–42.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Pasternak AO, Lukashov VV, Berkhout B. Cell-associated HIV RNA: a dynamic biomarker of viral persistence. Retrovirology. 2013;10:41.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Perelson AS, Essunger P, Cao Y, Vesanen M, Hurley A, et al. Decay characteristics of HIV-1-infected compartments during combination therapy. Nature. 1997;387:188–91.CrossRefPubMedGoogle Scholar
  48. Pinkevych M, Cromer D, Tolstrup M, Grimm AJ, Cooper DA, et al. HIV reactivation from latency after treatment interruption occurs on average every 5–8 days – implications for HIV remission. PLoS Pathog. 2015;11(7):e1005000.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Politch JA, Mayer KH, Welles SL, O’Brien WX, Xu C, et al. Highly active antiretroviral therapy does not completely suppress HIV in semen of sexually active HIV-infected men who have sex with men. AIDS. 2012;26(12):1535–43.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Power C, McArthur JC, Nath A, Wehrly K, Mayne M, et al. Neuronal death induced by brain-derived human immunodeficiency virus type 1 envelope genes differs between demented and nondemented AIDS patients. J Virol. 1998;72(11):9045–53.PubMedPubMedCentralGoogle Scholar
  51. Rodger AJ, Lodwick R, Schechter M, Deeks S, Amin J, et al. Mortality in well-controlled HIV in the continuous antiretroviral therapy arms of the SMART and ESPRIT trials compared with the general population. AIDS (London, England). 2013;27:973–9.CrossRefGoogle Scholar
  52. Rong L, Perelson AS. Modeling HIV persistence, the latent reservoir, and viral blips. J Theor Biol. 2009;260(2):308–31.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Rothenberger MK, Keele BF, Wietgrefe SW, Fletcher CV, Beilman GJ, et al. Large number of rebounding/founder HIV variants emerge from multifocal infection in lymphatic tissues after treatment interruption. Proc Natl Acad Sci USA. 2015;112(10):E1126–34.Google Scholar
  54. Rouzioux C, Richman D. How to best measure HIV reservoirs? Curr Opin HIV AIDS. 2013;8(3):170–5.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Sáez-Cirión A, Bacchus C, Hocqueloux L, Avettand-Fenoel V, Girault I, et al. Post-treatment HIV controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI study. PLoS Pathog. 2013;9(3):e1003211.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Santoro MM, Fabeni L, Armenia D, Alteri C, Pinto DD, et al. Reliability and clinical relevance of the HIV-1 drug resistance test in patients with low viremia levels. Clin Infect Dis. 2014;58(8):1156–64.CrossRefPubMedGoogle Scholar
  57. Shan L, Rabi SA, Laird GM, Eisele EE, Zhang H, et al. A novel PCR assay for quantification of HIV-1 RNA. J Virol. 2013;87(11):6521–5.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Siliciano JD, Kajdas J, Finzi D, Quinn TC, Chadwick K, et al. Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat Med. 2003;9(6):727–8.CrossRefPubMedGoogle Scholar
  59. Sonza S, Mutimer HP, Oelrichs R, Jardine D, Harvey H, et al. Monocytes harbour replication-competent, non-latent HIV-1 in patients on highly active antiretroviral therapy. AIDS (London, England). 2001;15:17–22.CrossRefGoogle Scholar
  60. Steingrover R, Pogány K, Garcia EF, Jurriaans S, Brinkman K, et al. HIV-1 viral rebound dynamics after a single treatment interruption depends on time of initiation of highly active antiretroviral therapy. AIDS (London, England). 2008;22(13):1583–8.CrossRefGoogle Scholar
  61. Sthör W, Fidler S, McClure M, Weber J, Cooper D, et al. Duration of HIV-1 viral suppression on cessation of antiretroviral therapy in primary infection correlates with time on therapy. PLoS One. 2013;8(10):e78287.CrossRefGoogle Scholar
  62. Svicher V, Ceccherini-Silberstein F, Antinori A, Aquaro S, Perno CF. Understanding HIV compartments and reservoirs. Curr HIV/AIDS Rep. 2014;11:186–94.CrossRefPubMedGoogle Scholar
  63. Zayyad Z, Spudich S. Neuropathogenesis of HIV: from initial neuroinvasion to HIV-associated neurocognitive disorder (HAND). Curr HIV/AIDS Rep. 2015;12(1):16–24.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Division of Infectious DiseasesEmory University School of MedicineAtlantaUSA