Encyclopedia of AIDS

Living Edition
| Editors: Thomas J. Hope, Douglas Richman, Mario Stevenson

HIV-1 Mutational Escape from Host Immunity

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-9610-6_189-1


Within an infected individual, HIV-1 develops specific mutations within its genome that allow it to escape detection by host immune responses. As such, host immunity represents a major selective force driving the evolution and diversification of HIV-1 at the individual and population levels. Here, we highlight HIV-1 mutational escape from adaptive, innate, and vaccine-induced immune responses as highly specific and reproducible processes beginning rapidly following HIV-1 infection. The potential biological implications of immune escape, including viral fitness costs and population-level HIV-1 adaptation to host immunity, are also summarized.

Escape from CD8+ Cytotoxic T Lymphocytes

CD8+ cytotoxic T lymphocytes (CTL) (HIV & SIV, CD8 T Cell Responses) eliminate HIV-infected cells via the recognition of short, virus-derived peptide epitopes that are produced within the infected cell and presented at its surface by the highly polymorphic human leukocyte antigen (HLA) class I...


Human Leukocyte Antigen Simian Immunodeficiency Virus Human Leukocyte Antigen Class Human Leukocyte Antigen Allele Immune Escape Mutation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Alizon S, von Wyl V, Stadler T, Kouyos RD, Yerly S, et al. Phylogenetic approach reveals that virus genotype largely determines HIV set-point viral load. PLoS Pathog. 2010;6:e1001123.PubMedCentralPubMedCrossRefGoogle Scholar
  2. Alter G, Martin MP, Teigen N, Carr WH, Suscovich TJ, et al. Differential natural killer cell-mediated inhibition of HIV-1 replication based on distinct KIR/HLA subtypes. J Exp Med. 2007;204:3027–36.PubMedCentralPubMedCrossRefGoogle Scholar
  3. Alter G, Heckerman D, Schneidewind A, Fadda L, Kadie CM, et al. HIV-1 adaptation to NK-cell-mediated immune pressure. Nature. 2011;476:96–100.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Altfeld M, Allen TM. Hitting HIV where it hurts: an alternative approach to HIV vaccine design. Trends Immunol. 2006;27:504–10.PubMedCrossRefGoogle Scholar
  5. Apps R, Qi Y, Carlson JM, Chen H, Gao X, et al. Influence of HLA-C expression level on HIV control. Science. 2013;340:87–91.PubMedCentralPubMedCrossRefGoogle Scholar
  6. Avila-Rios S, Ormsby CE, Carlson JM, Valenzuela-Ponce H, Blanco-Heredia J, et al. Unique features of HLA-mediated HIV evolution in a Mexican cohort: a comparative study. Retrovirology. 2009;6:72.PubMedCentralPubMedCrossRefGoogle Scholar
  7. Bar KJ, Li H, Chamberland A, Tremblay C, Routy JP, et al. Wide variation in the multiplicity of HIV-1 infection among injection drug users. J Virol. 2010;84:6241–7.PubMedCentralPubMedCrossRefGoogle Scholar
  8. Bar KJ, Tsao CY, Iyer SS, Decker JM, Yang Y, et al. Early low-titer neutralizing antibodies impede HIV-1 replication and select for virus escape. PLoS Pathog. 2012;8:e1002721.PubMedCentralPubMedCrossRefGoogle Scholar
  9. Bartha I, Carlson JM, Brumme CJ, McLaren PJ, Brumme ZL, et al. A genome-to-genome analysis of associations between human genetic variation, HIV-1 sequence diversity, and viral control. Elife. 2013;2:e01123.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Bashirova AA, Thomas R, Carrington M. HLA/KIR restraint of HIV: surviving the fittest. Annu Rev Immunol. 2011;29:295–317.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Berger CT, Carlson JM, Brumme CJ, Hartman KL, Brumme ZL, et al. Viral adaptation to immune selection pressure by HLA class I-restricted CTL responses targeting epitopes in HIV frameshift sequences. J Exp Med. 2010;207(61–75):S61–12.CrossRefGoogle Scholar
  12. Berman PW, Gray AM, Wrin T, Vennari JC, Eastman DJ, et al. Genetic and immunologic characterization of viruses infecting MN-rgp120-vaccinated volunteers. J Infect Dis. 1997;176:384–97.PubMedCrossRefGoogle Scholar
  13. Betts MR, Exley B, Price DA, Bansal A, Camacho ZT, et al. Characterization of functional and phenotypic changes in anti-Gag vaccine-induced T cell responses and their role in protection after HIV-1 infection. Proc Natl Acad Sci U S A. 2005;102:4512–7.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Bhattacharya T, Daniels M, Heckerman D, Foley B, Frahm N, et al. Founder effects in the assessment of HIV polymorphisms and HLA allele associations. Science. 2007;315:1583–6.PubMedCrossRefGoogle Scholar
  15. Boulet S, Sharafi S, Simic N, Bruneau J, Routy JP, et al. Increased proportion of KIR3DS1 homozygotes in HIV-exposed uninfected individuals. AIDS. 2008a;22:595–9.PubMedCrossRefGoogle Scholar
  16. Boulet S, Kleyman M, Kim JY, Kamya P, Sharafi S, et al. A combined genotype of KIR3DL1 high expressing alleles and HLA-B*57 is associated with a reduced risk of HIV infection. AIDS. 2008b;22:1487–91.PubMedCrossRefGoogle Scholar
  17. Bouvin-Pley M, Morgand M, Moreau A, Jestin P, Simonnet C, et al. Evidence for a continuous drift of the HIV-1 species towards higher resistance to neutralizing antibodies over the course of the epidemic. PLoS Pathog. 2013;9:e1003477.PubMedCentralPubMedCrossRefGoogle Scholar
  18. Brackenridge S, Evans EJ, Toebes M, Goonetilleke N, Liu MK, et al. An early HIV mutation within an HLA-B*57-restricted T cell epitope abrogates binding to the killer inhibitory receptor 3DL1. J Virol. 2011;85:5415–22.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Brockman MA, Schneidewind A, Lahaie M, Schmidt A, Miura T, et al. Escape and compensation from early HLA-B57-mediated cytotoxic T-lymphocyte pressure on human immunodeficiency virus type 1 Gag alter capsid interactions with cyclophilin A. J Virol. 2007;81:12608–18.PubMedCentralPubMedCrossRefGoogle Scholar
  20. Brockman MA, Chopera DR, Olvera A, Brumme CJ, Sela J, et al. Uncommon pathways of immune escape attenuate HIV-1 integrase replication capacity. J Virol. 2012;86:6913–23.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Brumme ZL, Brumme CJ, Heckerman D, Korber BT, Daniels M, et al. Evidence of differential HLA class I-mediated viral evolution in functional and accessory/regulatory genes of HIV-1. PLoS Pathog. 2007;3:e94.PubMedCentralPubMedCrossRefGoogle Scholar
  22. Brumme ZL, Brumme CJ, Carlson J, Streeck H, John M, et al. Marked epitope- and allele-specific differences in rates of mutation in human immunodeficiency type 1 (HIV-1) Gag, Pol, and Nef cytotoxic T-lymphocyte epitopes in acute/early HIV-1 infection. J Virol. 2008;82:9216–27.PubMedCentralPubMedCrossRefGoogle Scholar
  23. Buchbinder SP, Mehrotra DV, Duerr A, Fitzgerald DW, Mogg R, et al. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet. 2008;372:1881–93.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Bunnik EM, Euler Z, Welkers MR, Boeser-Nunnink BD, Grijsen ML, et al. Adaptation of HIV-1 envelope gp120 to humoral immunity at a population level. Nat Med. 2010;16:995–7.PubMedCrossRefGoogle Scholar
  25. Cardinaud S, Consiglieri G, Bouziat R, Urrutia A, Graff-Dubois S, et al. CTL escape mediated by proteasomal destruction of an HIV-1 cryptic epitope. PLoS Pathog. 2011;7:e1002049.PubMedCentralPubMedCrossRefGoogle Scholar
  26. Carlson JM, Brumme ZL, Rousseau CM, Brumme CJ, Matthews P, et al. Phylogenetic dependency networks: inferring patterns of CTL escape and codon covariation in HIV-1 Gag. PLoS Comput Biol. 2008;4:e1000225.PubMedCentralPubMedCrossRefGoogle Scholar
  27. Carlson JM, Brumme CJ, Martin E, Listgarten J, Brockman MA, et al. Correlates of protective cellular immunity revealed by analysis of population-level immune escape pathways in HIV-1. J Virol. 2012a;86:13202–16.PubMedCentralPubMedCrossRefGoogle Scholar
  28. Carlson JM, Listgarten J, Pfeifer N, Tan V, Kadie C, et al. Widespread impact of HLA restriction on immune control and escape pathways of HIV-1. J Virol. 2012b;86:5230–43.PubMedCentralPubMedCrossRefGoogle Scholar
  29. Carrington M, O’Brien SJ. The influence of HLA genotype on AIDS. Annu Rev Med. 2003;54:535–51.PubMedCrossRefGoogle Scholar
  30. Cella M, Longo A, Ferrara GB, Strominger JL, Colonna M. NK3-specific natural killer cells are selectively inhibited by Bw4-positive HLA alleles with isoleucine 80. J Exp Med. 1994;180:1235–42.PubMedCrossRefGoogle Scholar
  31. Chen BK, Gandhi RT, Baltimore D. CD4 down-modulation during infection of human T cells with human immunodeficiency virus type 1 involves independent activities of vpu, env, and nef. J Virol. 1996;70:6044–53.PubMedCentralPubMedGoogle Scholar
  32. Chikata T, Carlson JM, Tamura Y, Borghan MA, Naruto T, et al. Host-specific adaptation of HIV-1 subtype B in the Japanese population. J Virol. 2014;88:4764–75.PubMedCentralPubMedCrossRefGoogle Scholar
  33. Chopera DR, Woodman Z, Mlisana K, Mlotshwa M, Martin DP, et al. Transmission of HIV-1 CTL escape variants provides HLA-mismatched recipients with a survival advantage. PLoS Pathog. 2008;4:e1000033.PubMedCentralPubMedCrossRefGoogle Scholar
  34. Chung AW, Isitman G, Navis M, Kramski M, Center RJ, et al. Immune escape from HIV-specific antibody-dependent cellular cytotoxicity (ADCC) pressure. Proc Natl Acad Sci U S A. 2011;108:7505–10.PubMedCentralPubMedCrossRefGoogle Scholar
  35. Cohen GB, Gandhi RT, Davis DM, Mandelboim O, Chen BK, et al. The selective downregulation of class I major histocompatibility complex proteins by HIV-1 protects HIV-infected cells from NK cells. Immunity. 1999;10:661–71.PubMedCrossRefGoogle Scholar
  36. Cotton LA, Kuang XT, Le AQ, Carlson JM, Chan B, et al. Genotypic and functional impact of HIV-1 adaptation to its host population during the North American epidemic. PLoS Genet. 2014;10:e1004295.PubMedCentralPubMedCrossRefGoogle Scholar
  37. Crawford H, Prado JG, Leslie A, Hue S, Honeyborne I, et al. Compensatory mutation partially restores fitness and delays reversion of escape mutation within the immunodominant HLA-B*5703-restricted Gag epitope in chronic human immunodeficiency virus type 1 infection. J Virol. 2007;81:8346–51.PubMedCentralPubMedCrossRefGoogle Scholar
  38. Crawford H, Lumm W, Leslie A, Schaefer M, Boeras D, et al. Evolution of HLA-B*5703 HIV-1 escape mutations in HLA-B*5703-positive individuals and their transmission recipients. J Exp Med. 2009;206:909–21.PubMedCentralPubMedGoogle Scholar
  39. Dilernia DA, Jones L, Rodriguez S, Turk G, Rubio AE, et al. HLA-driven convergence of HIV-1 viral subtypes B and F toward the adaptation to immune responses in human populations. PLoS One. 2008;3:e3429.PubMedCentralPubMedCrossRefGoogle Scholar
  40. Douek DC, Brenchley JM, Betts MR, Ambrozak DR, Hill BJ, et al. HIV preferentially infects HIV-specific CD4+ T cells. Nature. 2002;417:95–8.PubMedCrossRefGoogle Scholar
  41. Draenert R, Le Gall S, Pfafferott KJ, Leslie AJ, Chetty P, et al. Immune selection for altered antigen processing leads to cytotoxic T lymphocyte escape in chronic HIV-1 infection. J Exp Med. 2004;199:905–15.PubMedCentralPubMedCrossRefGoogle Scholar
  42. Edlefsen PT, Gilbert PB, Rolland M. Sieve analysis in HIV-1 vaccine efficacy trials. Curr Opin HIV AIDS. 2013;8:432–6.PubMedCrossRefGoogle Scholar
  43. Euler Z, van Gils MJ, Bunnik EM, Phung P, Schweighardt B, et al. Cross-reactive neutralizing humoral immunity does not protect from HIV type 1 disease progression. J Infect Dis. 2010;201:1045–53.PubMedCrossRefGoogle Scholar
  44. Fadda L, Korner C, Kumar S, van Teijlingen NH, Piechocka-Trocha A, et al. HLA-Cw*0102-restricted HIV-1 p24 epitope variants can modulate the binding of the inhibitory KIR2DL2 receptor and primary NK cell function. PLoS Pathog. 2012;8:e1002805.PubMedCentralPubMedCrossRefGoogle Scholar
  45. Fellay J, Shianna KV, Ge D, Colombo S, Ledergerber B, et al. A whole-genome association study of major determinants for host control of HIV-1. Science. 2007;317:944–7.PubMedCentralPubMedCrossRefGoogle Scholar
  46. Frost SD, Wrin T, Smith DM, Kosakovsky Pond SL, Liu Y, et al. Neutralizing antibody responses drive the evolution of human immunodeficiency virus type 1 envelope during recent HIV infection. Proc Natl Acad Sci U S A. 2005;102:18514–9.PubMedCentralPubMedCrossRefGoogle Scholar
  47. Fryer HR, Frater J, Duda A, Palmer D, Phillips RE, et al. Cytotoxic T-lymphocyte escape mutations identified by HLA association favor those which escape and revert rapidly. J Virol. 2012;86:8568–80.PubMedCentralPubMedCrossRefGoogle Scholar
  48. Gao X, Bashirova A, Iversen AK, Phair J, Goedert JJ, et al. AIDS restriction HLA allotypes target distinct intervals of HIV-1 pathogenesis. Nat Med. 2005;11:1290–2.PubMedCrossRefGoogle Scholar
  49. Gaschen B, Taylor J, Yusim K, Foley B, Gao F, et al. Diversity considerations in HIV-1 vaccine selection. Science. 2002;296:2354–60.PubMedCrossRefGoogle Scholar
  50. Gilbert P, Self S, Rao M, Naficy A, Clemens J. Sieve analysis: methods for assessing from vaccine trial data how vaccine efficacy varies with genotypic and phenotypic pathogen variation. J Clin Epidemiol. 2001;54:68–85.PubMedCrossRefGoogle Scholar
  51. Goonetilleke N, Liu MK, Salazar-Gonzalez JF, Ferrari G, Giorgi E, et al. The first T cell response to transmitted/founder virus contributes to the control of acute viremia in HIV-1 infection. J Exp Med. 2009;206:1253–72.PubMedCentralPubMedCrossRefGoogle Scholar
  52. Goulder PJ, Phillips RE, Colbert RA, McAdam S, Ogg G, et al. Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS. Nat Med. 1997;3:212–7.PubMedCrossRefGoogle Scholar
  53. Goulder PJ, Brander C, Tang Y, Tremblay C, Colbert RA, et al. Evolution and transmission of stable CTL escape mutations in HIV infection. Nature. 2001;412:334–8.PubMedCrossRefGoogle Scholar
  54. Harcourt GC, Garrard S, Davenport MP, Edwards A, Phillips RE. HIV-1 variation diminishes CD4 T lymphocyte recognition. J Exp Med. 1998;188:1785–93.PubMedCentralPubMedCrossRefGoogle Scholar
  55. Henn MR, Boutwell CL, Charlebois P, Lennon NJ, Power KA, et al. Whole genome deep sequencing of HIV-1 reveals the impact of early minor variants upon immune recognition during acute infection. PLoS Pathog. 2012;8:e1002529.PubMedCentralPubMedCrossRefGoogle Scholar
  56. Herbeck JT, Rolland M, Liu Y, McLaughlin S, McNevin J, et al. Demographic processes affect HIV-1 evolution in primary infection before the onset of selective processes. J Virol. 2011;85:7523–34.PubMedCentralPubMedCrossRefGoogle Scholar
  57. Hertz T, Ahmed H, Friedrich DP, Casimiro DR, Self SG, et al. HIV-1 vaccine-induced T-cell responses cluster in epitope hotspots that differ from those induced in natural infection with HIV-1. PLoS Pathog. 2013;9:e1003404.PubMedCentralPubMedCrossRefGoogle Scholar
  58. Iglesias MC, Almeida JR, Fastenackels S, van Bockel DJ, Hashimoto M, et al. Escape from highly effective public CD8+ T-cell clonotypes by HIV. Blood. 2011;118:2138–49.PubMedCentralPubMedCrossRefGoogle Scholar
  59. Kawashima Y, Pfafferott K, Frater J, Matthews P, Payne R, et al. Adaptation of HIV-1 to human leukocyte antigen class I. Nature. 2009;458:641–5.PubMedCentralPubMedCrossRefGoogle Scholar
  60. Kelleher AD, Long C, Holmes EC, Allen RL, Wilson J, et al. Clustered mutations in HIV-1 gag are consistently required for escape from HLA-B27-restricted cytotoxic T lymphocyte responses. J Exp Med. 2001;193:375–86.PubMedCentralPubMedCrossRefGoogle Scholar
  61. Koeppe JR, Campbell TB, Rapaport EL, Wilson CC. HIV-1-specific CD4+ T-cell responses are not associated with significant viral epitope variation in persons with persistent plasma viremia. J Acquir Immune Defic Syndr. 2006;41:140–8.PubMedCrossRefGoogle Scholar
  62. Koibuchi T, Allen TM, Lichterfeld M, Mui SK, O’Sullivan KM, et al. Limited sequence evolution within persistently targeted CD8 epitopes in chronic human immunodeficiency virus type 1 infection. J Virol. 2005;79:8171–81.PubMedCentralPubMedCrossRefGoogle Scholar
  63. Leslie AJ, Pfafferott KJ, Chetty P, Draenert R, Addo MM, et al. HIV evolution: CTL escape mutation and reversion after transmission. Nat Med. 2004;10:282–9.PubMedCrossRefGoogle Scholar
  64. Leslie A, Kavanagh D, Honeyborne I, Pfafferott K, Edwards C, et al. Transmission and accumulation of CTL escape variants drive negative associations between HIV polymorphisms and HLA. J Exp Med. 2005;201:891–902.PubMedCentralPubMedCrossRefGoogle Scholar
  65. Liao HX, Lynch R, Zhou T, Gao F, Alam SM, et al. Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature. 2013;496:469–76.PubMedCentralPubMedCrossRefGoogle Scholar
  66. Lobritz MA, Lassen KG, Arts EJ. HIV-1 replicative fitness in elite controllers. Curr Opin HIV AIDS. 2011;6:214–20.PubMedCrossRefGoogle Scholar
  67. Malherbe DC, Doria-Rose NA, Misher L, Beckett T, Puryear WB, et al. Sequential immunization with a subtype B HIV-1 envelope quasispecies partially mimics the in vivo development of neutralizing antibodies. J Virol. 2011;85:5262–74.PubMedCentralPubMedCrossRefGoogle Scholar
  68. Malnati MS, Peruzzi M, Parker KC, Biddison WE, Ciccone E, et al. Peptide specificity in the recognition of MHC class I by natural killer cell clones. Science. 1995;267:1016–8.PubMedCrossRefGoogle Scholar
  69. Martin MP, Gao X, Lee JH, Nelson GW, Detels R, et al. Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nat Genet. 2002;31:429–34.PubMedGoogle Scholar
  70. Martin MP, Qi Y, Gao X, Yamada E, Martin JN, et al. Innate partnership of HLA-B and KIR3DL1 subtypes against HIV-1. Nat Genet. 2007;39:733–40.PubMedCentralPubMedCrossRefGoogle Scholar
  71. Matano T, Shibata R, Siemon C, Connors M, Lane HC, et al. Administration of an anti-CD8 monoclonal antibody interferes with the clearance of chimeric simian/human immunodeficiency virus during primary infections of rhesus macaques. J Virol. 1998;72:164–9.PubMedCentralPubMedGoogle Scholar
  72. McKinnon LR, Capina R, Peters H, Mendoza M, Kimani J, et al. Clade-specific evolution mediated by HLA-B*57/5801 in human immunodeficiency virus type 1 clade A1 p24. J Virol. 2009;83:12636–42.PubMedCentralPubMedCrossRefGoogle Scholar
  73. Miura T, Brockman MA, Schneidewind A, Lobritz M, Pereyra F, et al. HLA-B57/B*5801 human immunodeficiency virus type 1 elite controllers select for rare gag variants associated with reduced viral replication capacity and strong cytotoxic T-lymphocyte recognition. J Virol. 2009;83:2743–55.PubMedCentralPubMedCrossRefGoogle Scholar
  74. Moesta AK, Norman PJ, Yawata M, Yawata N, Gleimer M, et al. Synergistic polymorphism at two positions distal to the ligand-binding site makes KIR2DL2 a stronger receptor for HLA-C than KIR2DL3. J Immunol. 2008;180:3969–79.PubMedCrossRefGoogle Scholar
  75. Moore CB, John M, James IR, Christiansen FT, Witt CS, et al. Evidence of HIV-1 adaptation to HLA-restricted immune responses at a population level. Science. 2002;296:1439–43.PubMedCrossRefGoogle Scholar
  76. Moore PL, Gray ES, Wibmer CK, Bhiman JN, Nonyane M, et al. Evolution of an HIV glycan-dependent broadly neutralizing antibody epitope through immune escape. Nat Med. 2012;18:1688–92.PubMedCentralPubMedCrossRefGoogle Scholar
  77. Murphy MK, Yue L, Pan R, Boliar S, Sethi A, et al. Viral escape from neutralizing antibodies in early subtype A HIV-1 infection drives an increase in autologous neutralization breadth. PLoS Pathog. 2013;9:e1003173.PubMedCentralPubMedCrossRefGoogle Scholar
  78. Phillips RE, Rowland-Jones S, Nixon DF, Gotch FM, Edwards JP, et al. Human immunodeficiency virus genetic variation that can escape cytotoxic T cell recognition. Nature. 1991;354:453–9.PubMedCrossRefGoogle Scholar
  79. Prado JG, Honeyborne I, Brierley I, Puertas MC, Martinez-Picado J, et al. Functional consequences of human immunodeficiency virus escape from an HLA-B*13-restricted CD8+ T-cell epitope in p1 Gag protein. J Virol. 2009;83:1018–25.PubMedCentralPubMedCrossRefGoogle Scholar
  80. Prince JL, Claiborne DT, Carlson JM, Schaefer M, Yu T, et al. Role of transmitted Gag CTL polymorphisms in defining replicative capacity and early HIV-1 pathogenesis. PLoS Pathog. 2012;8:e1003041.PubMedCentralPubMedCrossRefGoogle Scholar
  81. Qi Y, Martin MP, Gao X, Jacobson L, Goedert JJ, et al. KIR/HLA pleiotropism: protection against both HIV and opportunistic infections. PLoS Pathog. 2006;2:e79.PubMedCentralPubMedCrossRefGoogle Scholar
  82. Richman DD, Wrin T, Little SJ, Petropoulos CJ. Rapid evolution of the neutralizing antibody response to HIV type 1 infection. Proc Natl Acad Sci U S A. 2003;100:4144–9.PubMedCentralPubMedCrossRefGoogle Scholar
  83. Rolland M, Tovanabutra S, Decamp AC, Frahm N, Gilbert PB, et al. Genetic impact of vaccination on breakthrough HIV-1 sequences from the STEP trial. Nat Med. 2011;17:366–71.PubMedCentralPubMedCrossRefGoogle Scholar
  84. Rolland M, Edlefsen PT, Larsen BB, Tovanabutra S, Sanders-Buell E, et al. Increased HIV-1 vaccine efficacy against viruses with genetic signatures in Env V2. Nature. 2012;490:417–20.PubMedCentralPubMedCrossRefGoogle Scholar
  85. Rong R, Gnanakaran S, Decker JM, Bibollet-Ruche F, Taylor J, et al. Unique mutational patterns in the envelope alpha 2 amphipathic helix and acquisition of length in gp120 hypervariable domains are associated with resistance to autologous neutralization of subtype C human immunodeficiency virus type 1. J Virol. 2007;81:5658–68.PubMedCentralPubMedCrossRefGoogle Scholar
  86. Rong R, Li B, Lynch RM, Haaland RE, Murphy MK, et al. Escape from autologous neutralizing antibodies in acute/early subtype C HIV-1 infection requires multiple pathways. PLoS Pathog. 2009;5:e1000594.PubMedCentralPubMedCrossRefGoogle Scholar
  87. Salazar-Gonzalez JF, Salazar MG, Keele BF, Learn GH, Giorgi EE, et al. Genetic identity, biological phenotype, and evolutionary pathways of transmitted/founder viruses in acute and early HIV-1 infection. J Exp Med. 2009;206:1273–89.PubMedCentralPubMedCrossRefGoogle Scholar
  88. Schellens IM, Navis M, van Deutekom HW, Boeser-Nunnink B, Berkhout B, et al. Loss of HIV-1-derived cytotoxic T lymphocyte epitopes restricted by protective HLA-B alleles during the HIV-1 epidemic. AIDS. 2011;25:1691–700.PubMedCrossRefGoogle Scholar
  89. Schneidewind A, Brockman MA, Yang R, Adam RI, Li B, et al. Escape from the dominant HLA-B27-restricted cytotoxic T-lymphocyte response in Gag is associated with a dramatic reduction in human immunodeficiency virus type 1 replication. J Virol. 2007;81:12382–93.PubMedCentralPubMedCrossRefGoogle Scholar
  90. Schneidewind A, Brumme ZL, Brumme CJ, Power KA, Reyor LL, et al. Transmission and long-term stability of compensated CD8 escape mutations. J Virol. 2009;83:3993–7.PubMedCentralPubMedCrossRefGoogle Scholar
  91. Troyer RM, McNevin J, Liu Y, Zhang SC, Krizan RW, et al. Variable fitness impact of HIV-1 escape mutations to cytotoxic T lymphocyte (CTL) response. PLoS Pathog. 2009;5:e1000365.PubMedCentralPubMedCrossRefGoogle Scholar
  92. Ueno T, Motozono C, Dohki S, Mwimanzi P, Rauch S, et al. CTL-mediated selective pressure influences dynamic evolution and pathogenic functions of HIV-1 Nef. J Immunol. 2008;180:1107–16.PubMedCrossRefGoogle Scholar
  93. Veillette M, Desormeaux A, Medjahed H, Gharsallah NE, Coutu M, et al. Interaction with cellular CD4 exposes HIV-1 envelope epitopes targeted by antibody-dependent cell-mediated cytotoxicity. J Virol. 2014;88:2633–44.PubMedCentralPubMedCrossRefGoogle Scholar
  94. Wei X, Decker JM, Wang S, Hui H, Kappes JC, et al. Antibody neutralization and escape by HIV-1. Nature. 2003;422:307–12.PubMedCrossRefGoogle Scholar
  95. Wren L, Kent SJ. HIV vaccine efficacy trial: glimmers of hope and the potential role of antibody-dependent cellular cytotoxicity. Hum Vaccin. 2011;7:466–73.PubMedCrossRefGoogle Scholar
  96. Wright JK, Brumme ZL, Julg B, van der Stok M, Mncube Z, et al. Lack of association between HLA class II alleles and in vitro replication capacities of recombinant viruses encoding HIV-1 subtype C Gag-protease from chronically infected individuals. J Virol. 2012a;86:1273–6.PubMedCentralPubMedCrossRefGoogle Scholar
  97. Wright JK, Naidoo VL, Brumme ZL, Prince JL, Claiborne DT, et al. Impact of HLA-B*81-Associated mutations in HIV-1 Gag on viral replication capacity. J Virol. 2012b;86:3193–9.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Faculty of Health SciencesSimon Fraser UniversityBurnabyCanada
  2. 2.British Columbia Centre for Excellence in HIV/AIDSVancouverCanada