Encyclopedia of AIDS

Living Edition
| Editors: Thomas J. Hope, Douglas Richman, Mario Stevenson

Gamma Delta T Cells

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-9610-6_182-1

Definition

Human T cells recognize infectious agents or cancer through two main types of cell surface antigen receptors. CD4+ or CD8+ cells express alpha and beta chains to form the αβ T cell receptor (TCR). An alternate T cell receptor is made from gamma and delta chains (γδ TCR). The αβ TCR recognizes peptides presented by major histocompatibility complex (MHC) molecules. Molecular targets for γδ TCR include non-peptidic antigens that are recognized without MHC presentation. During early phases of HIV disease, the major subset of γδ T cells in blood is extensively depleted or inactivated. Consequently, HIV patients have profound γδ T cell deficiencies and fail to generate normal γδ T cell responses to phosphoantigens (five-carbon pyrophosphates made by the host or selected microbes). The phosphoantigen response is important for natural tumor immunity, for tuberculosis resistance, for immune regulation and probably for HIV control. Thus, γδ T cell depletion occurring in every infected...

Keywords

Lymphoma Leukemia Tuberculosis Malaria Microbe 
This is a preview of subscription content, log in to check access

References

  1. Agrati C, D’Offizi G, Gougeon ML, Malkovsky M, Sacchi A, Casetti R, Bordoni V, Cimini E, Martini F. Innate gamma/delta T-cells during HIV infection: Terra relatively Incognita in novel vaccination strategies? AIDS Rev. 2011;13(1):3–12.PubMedGoogle Scholar
  2. Ali Z, Shao L, Halliday L, Reichenberg A, Hintz M, Jomaa H, Chen ZW. Prolonged (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate-driven antimicrobial and cytotoxic responses of pulmonary and systemic Vgamma2Vdelta2 T cells in macaques. J Immunol. 2007;179(12):8287–96. (Baltimore, Md : 1950), PMCID: Pmc2865221.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Caccamo N, Todaro M, Sireci G, Meraviglia S, Stassi G, Dieli F. Mechanisms underlying lineage commitment and plasticity of human gammadelta T cells. Cell Mol Immunol. 2013;10(1):30–4.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Cairo C, Armstrong CL, Cummings JS, Deetz CO, Tan M, Lu C, Davis CE, Pauza CD. Impact of age, gender, and race on circulating gammadelta T cells. Hum Immunol. 2010;71(10):968–75. PMCID: Pmc2941533.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Chaudhry S, Cairo C, Venturi V, Pauza CD. The gammadelta T-cell receptor repertoire is reconstituted in HIV patients after prolonged antiretroviral therapy. AIDS (Lond Engl). 2013;27(10):1557–62.CrossRefGoogle Scholar
  6. Chen ZW, Letvin NL. Vgamma2Vdelta2+ T cells and anti-microbial immune responses. Microbes Infect Instit Pasteur. 2003;5(6):491–8. PMCID: Pmc2873077.CrossRefGoogle Scholar
  7. Fournie JJ, Sicard H, Poupot M, Bezombes C, Blanc A, Romagne F, Ysebaert L, Laurent G. What lessons can be learned from gammadelta T cell-based cancer immunotherapy trials? Cell Mol Immunol. 2013;10(1):35–41.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Kalyan S, Kabelitz D. Defining the nature of human gammadelta T cells: a biographical sketch of the highly empathetic. Cell Mol Immunol. 2013;10(1):21–9.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Li H, Pauza CD. HIV envelope-mediated, CCR5/alpha4beta7-dependent killing of CD4-negative gammadelta T cells which are lost during progression to AIDS. Blood. 2011;118(22):5824–31. PMCID: Pmc3228498.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Li H, Chaudhry S, Poonia B, Shao Y, Pauza CD. Depletion and dysfunction of Vgamma2Vdelta2 T cells in HIV disease: mechanisms, impacts and therapeutic implications. Cell Mol Immunol. 2013;10(1):42–9. PMCID: Pmc3753036.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Pauza CD, Riedel DJ, Gilliam BL, Redfield RR. Targeting gammadelta T cells for immunotherapy of HIV disease. Futur Virol. 2011;6(1):73–84. PMCID: Pmc3041588.CrossRefGoogle Scholar
  12. Riganti C, Massaia M, Davey MS, Eberl M. Human gammadelta T-cell responses in infection and immunotherapy: common mechanisms, common mediators? Eur J Immunol. 2012;42(7):1668–76.PubMedCrossRefGoogle Scholar
  13. Shao L, Zhang W, Zhang S, Chen CY, Jiang W, Xu Y, Meng C, Weng X, Chen ZW. Potent immune responses of Ag-specific Vgamma2Vdelta2+ T cells and CD8+ T cells associated with latent stage of Mycobacterium tuberculosis coinfection in HIV-1-infected humans. AIDS (Lond Engl). 2008;22(17):2241–50. PMCID: Pmc2743094.CrossRefGoogle Scholar
  14. Shen L, Shen Y, Huang D, Qiu L, Sehgal P, Du GZ, Miller MD, Letvin NL, Chen ZW. Development of Vgamma2Vdelta2+ T cell responses during active mycobacterial coinfection of simian immunodeficiency virus-infected macaques requires control of viral infection and immune competence of CD4+ T cells. J Infect Dis. 2004;190(8):1438–47. PMCID: Pmc2865241.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Wesch D, Hinz T, Kabelitz D. Analysis of the TCR Vgamma repertoire in healthy donors and HIV-1-infected individuals. Int Immunol. 1998;10(8):1067–75.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of MedicineInstitute of Human Virology, University of Maryland School of MedicineBaltimoreUSA
  2. 2.Department of Microbiology and Immunology, Center for Primate Biomedical ResearchUniversity of Illinois College of Medicine ChicagoChicagoUSA