Skip to main content

Immunopathogenesis of HIV Coinfections

  • Living reference work entry
  • First Online:
  • 223 Accesses

Definition

HIV-infected patients, particularly those with advanced immunodeficiency, are frequently coinfected with other common and opportunistic infections. Here, we discuss the immunopathogenesis of six common infections that cause significant morbidity in HIV-infected patients globally. These include coinfection with cytomegalovirus (CMV), Mycobacterium tuberculosis, Cryptococcus neoformans, hepatitis B virus (HBV), hepatitis C virus (HCV), and Plasmodium falciparum. We summarize the epidemiology and global burden of each coinfection; highlight the immune response, pathogenesis, and natural history; and discuss the immune interplay between HIV and the co-pathogen and also the effect of cART in the setting of HIV coinfections, including the pathogenesis of immune restoration disease (IRD).

Introduction

While AIDS-related deaths have declined globally with the availability of combination antiretroviral therapy (cART), coinfections remain a significant global burden, particularly in...

This is a preview of subscription content, log in via an institution.

References

  • Askarieh G, Alsio A, Pugnale P, et al. Systemic and intrahepatic interferon-gamma-inducible protein 10 kDa predicts the first-phase decline in hepatitis C virus RNA and overall viral response to therapy in chronic hepatitis C. Hepatology. 2010;51(5):1523–30.

    Article  PubMed  Google Scholar 

  • Barber DL, Andrade BB, Sereti I, Sher A. Immune reconstitution inflammatory syndrome: the trouble with immunity when you had none. Nat Rev Microbiol. 2012;10(2):150–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bayard F, Godon O, Nalpas B, et al. T-cell responses to hepatitis B splice-generated protein of hepatitis B virus and inflammatory cytokines/chemokines in chronic hepatitis B patients. ANRS study: HB EP 02 HBSP-FIBRO. J Viral Hepat. 2012;19(12):872–80.

    Article  PubMed  CAS  Google Scholar 

  • Boltjes A, Movita D, Boonstra A, Woltman AM. The role of Kupffer cells in hepatitis B and hepatitis C virus infections. J Hepatol. 2014;61(3):660–71.

    Article  PubMed  CAS  Google Scholar 

  • Cameron BA, Emerson CR, Workman C, Kelly MD, Lloyd AR, Post JJ. Alterations in immune function are associated with liver enzyme elevation in HIV and HCV co-infection after commencement of combination antiretroviral therapy. J Clin Immunol. 2011;31(6):1079–83.

    Article  PubMed  CAS  Google Scholar 

  • Chang CC, Crane M, Zhou J, et al. HIV and co-infections. Immunol Rev. 2013;254(1):114–42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang CC, Sheikh V, Sereti I, French MA. Immune reconstitution disorders in patients with HIV infection: from pathogenesis to prevention and treatment. Curr HIV/AIDS Rep. 2014;11(3):223–32.

    Article  PubMed  CAS  Google Scholar 

  • Crane M, Oliver B, Matthews G, et al. Immunopathogenesis of hepatic flare in HIV/hepatitis B virus (HBV)-coinfected individuals after the initiation of HBV-active antiretroviral therapy. J Infect Dis. 2009;199(7):974–81.

    Article  PubMed  CAS  Google Scholar 

  • Crane M, Avihingsanon A, Rajasuriar R, et al. LPS, immune activation and liver abnormalities in HIV-HBV co-infected individuals on HBV-active combination antiretroviral therapy. J Infect Dis. 2014;210(5):745-51. doi:10.1093/infdis/jiu119.

    Google Scholar 

  • Crough T, Khanna R. Immunobiology of human cytomegalovirus: from bench to bedside. Clin Microbiol Rev. 2009;22(1):76–98, Table.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dustin LB, Cashman SB, Laidlaw SM. Immune control and failure in HCV infection-tipping the balance. J Leukoc Biol. 2014;96(4):535-548

    Google Scholar 

  • Gonzalez R, Ataide R, Naniche D, Menendez C, Mayor A. HIV and malaria interactions: where do we stand? Expert Rev Anti Infect Ther. 2012;10(2):153–65.

    Article  PubMed  CAS  Google Scholar 

  • Hochman S, Kim K. The impact of HIV and malaria coinfection: what is known and suggested venues for further study. Interdiscip Perspect Infect Dis. 2009;2009:617954.

    PubMed  PubMed Central  Google Scholar 

  • Hole CR, Wormley Jr FL. Vaccine and immunotherapeutic approaches for the prevention of cryptococcosis: lessons learned from animal models. Front Microbiol. 2012;3:291.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hunt PW, Martin JN, Sinclair E, et al. Valganciclovir reduces T cell activation in HIV-infected individuals with incomplete CD4+ T cell recovery on antiretroviral therapy. J Infect Dis. 2011;203(10):1474–83.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lisco A, Vanpouille C, Margolis L. Coinfecting viruses as determinants of HIV disease. Curr HIV/AIDS Rep. 2009;6(1):5–12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Naeger DM, Martin JN, Sinclair E, et al. Cytomegalovirus-specific T cells persist at very high levels during long-term antiretroviral treatment of HIV disease. PLoS One. 2010;5(1):e8886.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliver BG, Elliott JH, Price P, et al. Mediators of innate and adaptive immune responses differentially affect immune restoration disease associated with Mycobacterium tuberculosis in HIV patients beginning antiretroviral therapy. J Infect Dis. 2010;202(11):1728–37.

    Article  PubMed  CAS  Google Scholar 

  • Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, Chiller TM. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS. 2009;23(4):525–30.

    Article  PubMed  Google Scholar 

  • Pean P, Nerrienet E, Madec Y, et al. Natural killer cell degranulation capacity predicts early onset of the immune reconstitution inflammatory syndrome (IRIS) in HIV-infected patients with tuberculosis. Blood. 2012;119(14):3315–20.

    Article  PubMed  CAS  Google Scholar 

  • Riley EM, Stewart VA. Immune mechanisms in malaria: new insights in vaccine development. Nat Med. 2013;19(2):168–78.

    Article  PubMed  CAS  Google Scholar 

  • Strazza M, Pirrone V, Wigdahl B, Nonnemacher MR. Breaking down the barrier: the effects of HIV-1 on the blood–brain barrier. Brain Res. 2011;1399:96–115.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Suthar AB, Lawn SD, del Amo J, et al. Antiretroviral therapy for prevention of tuberculosis in adults with HIV: a systematic review and meta-analysis. PLoS Med. 2012;9(7):e1001270.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tadokera R, Meintjes G, Skolimowska KH, et al. Hypercytokinaemia accompanies HIV-tuberculosis immune reconstitution inflammatory syndrome. Eur Respir J. 2011;37(5):1248–59.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon R. Lewin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 © Crown

About this entry

Cite this entry

Chang, C.C., Crane, M., Jaworowski, A., Lloyd, A., French, M.A., Lewin, S.R. (2014). Immunopathogenesis of HIV Coinfections. In: Hope, T., Stevenson, M., Richman, D. (eds) Encyclopedia of AIDS. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9610-6_179-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9610-6_179-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-9610-6

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics