Concentric Crater Fill

  • Frank C. Chuang
Living reference work entry


Concentrically- lineated crater-filling deposits in the mid-latitude (30–60° N and S) regions of Mars (Levy et al. 2010).

A type of viscous flow feature in fretted terrain



Large, thick accumulation of debris at the base of high-standing crater walls with a gentle downsloping surface and a convex lobate terminus (in cross-section). Multiple ridges and lineations are often observed concentric to the crater rim (Squyres 1979). Surface texture appears mounded and furrowed at 1–20 m resolution. Concentric crater fill may host ring-mold craters (Levy et al. 2010).


  1. (1)

    “Classic” type (Fig. 1), typical of mid-latitudes, characterized by concentric lineations to at least some portion of the crater rim and “brain terrain” textures (Levy et al. 2010).

  2. (2)

    “Low-definition” type (Fig. 2) lacks clearly defined concentric lineations or no “brain...


Aeolian Deposition Crater Wall Crater Floor Rock Glacier Glacial Moraine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Baker DMH, Head JW, Marchant DR (2010) Flow patterns of lobate debris aprons and lineated valley fill north of Ismeniae Fossae, Mars: evidence for extensive mid-latitude glaciation in the late Amazonian. Icarus 207:186–209. doi:10.1016/j.icarus.2009.11.017CrossRefGoogle Scholar
  2. Berman DC, Crown DA, Joseph ECS (2011) Determining erosional/depositional history of Deuteronilus Mensae, Mars using categorized crater size-frequency distributions. Lunar planetary science XXXLII: 1608Google Scholar
  3. Colaprete A, Jakosky BM (1998) Ice flow and rock glaciers on Mars. J Geophys Res 103:5897–5909CrossRefGoogle Scholar
  4. Degenhardt JJ, Giardino JR (2003) Subsurface investigation of a rock glacier using ground-penetrating radar: implications for locating stored water on Mars. J Geophys Res 108(E4):8036. doi:10.1029/2002JE001888CrossRefGoogle Scholar
  5. Dickson JL, Head JW, Marchant DR (2008) Late Amazonian glaciation at the dichotomy boundary on Mars: evidence for glacial thickness maxima and multiple glacial phases. Geology 36:411–414CrossRefGoogle Scholar
  6. Dickson JL, Head JW, Marchant DR (2009) Kilometer-thick ice accumulation and glaciation in the northern mid-latitudes of Mars: evidence for crater-filling events in the Late Amazonian at the Phlegra Montes. Earth Planet Sci Lett. doi:10.1016/j.epsl.2009.08.031Google Scholar
  7. Dickson JL, Head JW, Fassett CI (2012) Patterns of accumulation and flow of ice in the mid-latitudes of Mars during the Amazonian. Icarus 219:723–732. doi:10.1016/j.icarus.2012.03.010CrossRefGoogle Scholar
  8. Forget F, Haberle RM, Montmessin F, Levrard B, Head JW (2006) Formation of glaciers on Mars by atmospheric precipitation at high obliquity. Science 311:368–371. doi:10.1126/science.1120335CrossRefGoogle Scholar
  9. Howard AD (2003) Tongue ridges and rumpled crater floors in mid-southern-latitude martian craters. Lunar Planetary Sci XXXIV:1065Google Scholar
  10. Joseph ECS, Crown DA, Berman DC, Chuang FC (2011) Using CTX-based crater size-frequency distributions to refine the geologic history of Deuteronilus Mensae, Mars. Lunar planetary science XXXLII: 1608Google Scholar
  11. Levy JS, Head JW, Marchant DR (2009) Concentric crater fill in Utopia Planitia: timing and transitions between glacial “brain terrain” and periglacial processes. Icarus 202:462-476. doi:10.1016/j.icarus.2009.1002.1018Google Scholar
  12. Levy J, Head JW, Marchant DR (2010) Concentric crater fill in the northern mid-latitudes of Mars: formation processes and relationships to similar landforms of glacial origin. Icarus 209:390–404CrossRefGoogle Scholar
  13. Levy JS, Head JW, Marchant DR (2007) Lineated valley fill and lobate debris apron stratigraphy in Nilosyrtis Mensae, Mars: evidence for phases of glacial modification of the dichotomy boundary. J Geophys Res 112. doi: 10.1029/2006JE002852Google Scholar
  14. Li H, Robinson MS, Jurdy DM (2005) Origin of Martian northern hemisphere mid-latitude lobate debris aprons. Icarus 176:382–394. doi:10.1016/j.icarus.2005.02.011CrossRefGoogle Scholar
  15. Lucchitta B (1984) Ice and debris in the fretted terrain, Mars. J Geophys Res 89:B409–B418CrossRefGoogle Scholar
  16. Madeleine JB, Forget F, Head JW, Levrard B, Montmessin F, Millour E (2009) Amazonian northern mid-latitude glaciation on Mars: a proposed climate scenario. Icarus 203:390–405. doi:10.1016/j.icarus.2009.04.037CrossRefGoogle Scholar
  17. Mangold N, Allemand P (2001) Topographic analysis of features related to ice on Mars’. Geophys Res Lett 28:407–410CrossRefGoogle Scholar
  18. Marchant DR, Head JW (2007) Antarctic dry valleys: microclimate zonation, variable geomorphic processes, and implications for assessing climate change on Mars. Icarus 192:187–222. doi:10.1016/j.icarus.2007.06.018CrossRefGoogle Scholar
  19. Morgan G, Head JW, Marchant DR (2009) Lineated Valley Fill (LVF) and lobate debris aprons (LDA) in the Deuteronilus Mensae northern dochotomy boundary region, Mars: constraints on the extent, age and episodicity of Amazonian glacial events. Icarus 202:22–38. doi:10.1016/j.icarus.2009.02.017CrossRefGoogle Scholar
  20. Pearce G, Osinski GR, Soare RJ (2011) Intra-crater glacial processes in central Utopia Planitia, Mars. Icarus 212:86–95CrossRefGoogle Scholar
  21. Rutledge AM, Christensen PR (2011) Hypsometric analysis of glacial features in the east Hellas Basin region, Mars: implications for past climate shifts. In: Lunar and planetary science conference 42. Abstract #2124Google Scholar
  22. Squyres SW (1978) Martian fretted terrain: flow of erosional debris. Icarus 34:600–613CrossRefGoogle Scholar
  23. Squyres SW (1979) The distribution of lobate debris aprons and similar flows on Mars. J Geophys Res 84:8087–8096CrossRefGoogle Scholar
  24. Squyres SW, Carr MH (1986) Geomorphic evidence for the distribution of ground ice on Mars. Science 231:249–252CrossRefGoogle Scholar
  25. Turtle EP, Pathare AV, Crown DA, Chuang FC, Hartmann WK, Greenham JC, Bueno NF (2003) Modeling the deformation of lobate debris aprons on Mars by creep of ice-rich permafrost. International conference on mars polar science and exploration 3. Abstract # 8091Google Scholar
  26. Van Gasselt S, Hauber E, Neukum G (2011) Lineated valley fill at the Martian dichotomy boundary: nature and history of degradation. J Geophys Res 115. doi: 10.0129/2009JE003336Google Scholar
  27. Whalley WB, Azizi F (2003) Rock glaciers and protalus landforms: analogous forms and ice sources on Earth and Mars. J Geophys Res 108: 13-1 to 13-7. doi:10.1029/2002JE001864Google Scholar
  28. Zimbelman JR, Clifford SM, Williams SH (1989) Concentric crater fill on Mars: an aeolian alternative to ice-rich mass wasting. Lunar Planetary Sci XIX:397–407Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Planetary Science InstituteTucsonUSA