Skip to main content

Hemispheric Dichotomy (Mars)

  • Living reference work entry
  • First Online:
Encyclopedia of Planetary Landforms
  • 76 Accesses

Definition

A global, hemispheric asymmetry on Mars, representing a physiographic divide between the rough highlands in the south and relatively smooth lowlands in the north.

Synonyms

Crustal dichotomy

Description

The hemispheric dichotomy on Mars is the largest-scale and most prominent landform on the surface of Mars. The dichotomy is oriented nearly north–south and represents a broad division of the surface into the smooth lowland northern plains and the heavily cratered southern highlands (Morgan et al. 2009). The highlands are situated at a topographic level several km higher than the lowlands: the difference is between 2.5 and 6 km (Fig. 1), with regional changes in elevation of up to 4 km (Smith et al. 1999). The dichotomy boundary is a near-global escarpment with the notable exceptions of Arabia Terra and Tharsis.

Fig. 1
figure 1

Topography of Mars from MOLA gridded data (MGS MOLA Global Colorized Hillshade)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aharonson O, Zuber MT, Rothman DH (2001) Statistics of Mars’ topography from the Mars Orbiter Laser Altimeter: Slopes, correlations, and physical models, J Geophys Res 105:23723–23736

    Article  Google Scholar 

  • Andrews-Hanna JC, Zuber MT, Banerdt WB (2008) The Borealis basin and the origin of the Martian crustal dichotomy. Nature 453:1212–1215

    Article  Google Scholar 

  • Carr MH (1981) T surface of Mars. Yale University Press, New Haven

    Google Scholar 

  • Elkins-Tanton LE, Zaranek SE, Parmentier EM, Hess PC (2005) Early magnetic field and magmatic activity on Mars from magma ocean cumulate overturn. Earth Planet Sci Lett 236:1–12

    Article  Google Scholar 

  • Frey HV (2006) Impact constraints on the age and origin of the lowlands of Mars. Geophys Res Lett 33:L08S02

    Article  Google Scholar 

  • Frey H (2008) Ages of very large impact basins on Mars: implications for the late heavy bombardment in the inner solar system. Geophys Res Lett 35:L13203

    Article  Google Scholar 

  • Frey HV, Schultz RA (1988) Large impact basins and the mega-impact origin for the crustal dichotomy on Mars. Geophys Res Lett 15:229–232

    Article  Google Scholar 

  • Frey HV, Roark JH, Shockey KM, Frey EL, Sakimoto SEH (2002) Ancient lowlands on Mars. Geophys Res Lett 29:1384

    Article  Google Scholar 

  • Hartmann WK (1973) Martian cratering 4, Mariner 9 initial analysis of cratering chronology. J Geophys Res 78:4096–4116

    Article  Google Scholar 

  • Hartmann WK, Neukum G (2001) Cratering chronology of Mars. Space Sci Rev 96:165–194

    Article  Google Scholar 

  • Irwin RP, Watters TR, Howard AD, Zimbelman JR (2004) Sedimentary resurfacing and fretted terrain development along the crustal dichotomy boundary, Aeolis Mensae, Mars. J Geophys Res 109:E09011

    Google Scholar 

  • Ke Y, Solomatov VS (2006) Early transient superplumes and the origin of the Martian crustal dichotomy. J Geophys Res 110:E10001

    Article  Google Scholar 

  • Kiefer WS (2005) Buried mass anomalies along the hemispheric dichotomy in eastern Mars: implications for the origin and evolution of the dichotomy. Geophys Res Lett 32:L22201

    Article  Google Scholar 

  • Marinova MM, Aharonson O, Asphaug E (2008) Mega-impact formation of the Mars hemispheric dichotomy, Nature 453:1216–1219

    Article  Google Scholar 

  • McGill GE, Dimitriou AM (1990) Origin of the Martian global dichotomy by crustal thinning in the Late Noachian or Early Hesperian. J Geophys Res 95:12,595–12,605

    Google Scholar 

  • Morgan GA, Head JW, Marchant DR (2009) Lineated valley fill (LVF) and lobate debris aprons (LDA) in the Deuteronilus Mensae northern dichotomy boundary region, Mars: constraints on the extent, age and episodicity of Amazonian glacial events. Icarus 202:22–38

    Article  Google Scholar 

  • Neumann GA, Zuber MT, Wieczorek MA, McGovern PJ, Lemoine FG, Smith DE (2004) The crustal structure of Mars from gravity and topography. J Geophys Res 109:E08002

    Google Scholar 

  • Nimmo F, Hart SD, Korycansky DG, Agnor CB (2008) Implications of an impact origin for the martian hemispheric dichotomy, Nature 453:1220–1223

    Article  Google Scholar 

  • Nimmo F, Tanaka KL (2005) Early crustal evolution of Mars. Ann Rev Earth Planet Sci 33:133–161

    Article  Google Scholar 

  • Reese CC, Orth CP, Solomatov VS (2010) Impact origin for the Martian crustal dichotomy: Half emptied or half filled? Icarus207:82–97

    Article  Google Scholar 

  • Reese CC, Orth CP, Solomatov VS (2011) Impact megadomes and the origin of the Martian crustal dichotomy. Icarus 213:433–442

    Article  Google Scholar 

  • Roberts JH, Zhong S (2006) Degree-1 convection in the Martian mantle and the origin of the hemispheric dichotomy. J Geophys Res 111:E06013

    Google Scholar 

  • Sleep NH (1994) Martian plate tectonics. J Geophys Res 99:5939–5955

    Google Scholar 

  • Smith DE, Zuber MT, Solomon SC, Phillips RJ, Head JW et al (1999) The global topography of Mars and implications for surface evolution. Science 279:1495–1503

    Article  Google Scholar 

  • Smith DE, Zuber MT, Frey HV, Garvin JB, Head JW et al (2001) Mars orbiter laser altimeter: experiment summary after the first year of global mapping of Mars. J Geophys Res 106:23689–23722

    Article  Google Scholar 

  • Solomon SC, Aharonson O, Aurnou JM, Banerdt WB, Carr MH et al (2005) New perspectives on Ancient Mars. Science 307:1214–1220

    Article  Google Scholar 

  • Squyres SW (1978) Martian fretted terrain – flow of erosional debris. Icarus 34:600–613

    Article  Google Scholar 

  • Tanaka KL, Scott DH, Greeley R (1992) Global stratigraphy. In: Kieffer HH, Jakosky BM, Snyder CW, Matthews MS (eds) Mars. University Arizona Press, Tucson, pp 345–382

    Google Scholar 

  • Ward AW (1979) Yardangs on Mars – evidence of recent wind erosion. J Geophys Res 84:8147–8166

    Article  Google Scholar 

  • Watters TR, McGovern PJ (2006) Lithospheric flexure and the evolution of the dichotomy boundary on Mars. Geophys Res Lett 33:L08S05

    Google Scholar 

  • Watters TR, Leuschen CJ, Plaut JJ, Picardi G, Safaeinili A et al (2006) MARSIS evidence of buried impact features in the northern lowlands of Mars. Nature 444:905–908

    Article  Google Scholar 

  • Watters TR, McGovern PJ, Irwin RP III (2007) Hemispheres apart: the crustal dichotomy on Mars. Annu Rev Earth Planet Sci 35:621–652

    Article  Google Scholar 

  • Wilhelms DE, Squyres SW (1984) The Martian hemispheric dichotomy may be due to a giant impact. Nature 309:138–140

    Article  Google Scholar 

  • Wise DU, Golombek MP, McGill GE (1979) Tectonic evolution of Mars. J Geophys Res 84:7934–7939

    Article  Google Scholar 

  • Zhong S, Zuber MT (2001) Degree-1 mantle convection and the crustal dichotomy on Mars. Earth Planet Sci Lett 189(1–2):75–84

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James H. Roberts .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Roberts, J.H. (2014). Hemispheric Dichotomy (Mars). In: Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9213-9_649-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9213-9_649-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-9213-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics