Skip to main content

Lake, Sea, and Ocean (Hydrological)

  • Living reference work entry
  • First Online:
Encyclopedia of Planetary Landforms

Definition

Standing bodies of volatile liquid that cover or fill a gravitational low (depression) up to a certain equipotential level on the surface or the subsurface of a planetary body.

Synonyms

Nonmagmatic liquid bodies

Subtypes of Liquid Bodies

  1. (1)

    Surface liquid bodies may be oceans, seas, and lakes of water (lacustrine features [Mars], crater lake, canyon lake [Mars]); hydrocarbon (lacustrine features [Titan]); or other volatiles as defined for that planetary body. These volatile bodies are composed of such molecules that tend to be easily evaporated or precipitated under surface conditions on a given planetary body, forming a closed cycle such as for H2O on the Earth or Mars and for hydrocarbons on Titan.

  2. (2)

    Subsurface volatile liquid bodies are, e.g., aquifers (Earth, Mars?) and alkanofers (Titan).

Subtypes of Lakes, Their Basins, and Sediments

Lake subtypes based on the supply of liquid and sediment to a basin providing a given accommodation space (Bohacs et al. 2000; Schon...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Arrhenius S (1898) The destinies of the stars. GP Putnam’s Sons, New York/London

    Google Scholar 

  • Baker VR, Strom RG, Gulick VC, Kargel JS, Komatsu G, Kale VS (1991) Ancient oceans, ice sheets and the hydrological cycle on Mars. Nature 352:589–594. doi:10.1038/352589a0

    Article  Google Scholar 

  • Bohacs KM, Carroll AR, Neal JE, Mankiewicz PJ (2000) Lake-basin type, source potential, and hydrocarbon character: an integrated-sequence-stratigraphic–geochemical framework. In: Gierlowski-Kordesch EH, Kelts KR (eds) Lake basins through space and time, vol 46, AAPG studies in geology. American Association of Petroleum Geologists, Tulsa, pp 3–34

    Google Scholar 

  • Cabrol NA, Grin EA (1999) Distribution, classification, and ages of Martian impact crater lakes. Icarus 142:160–172

    Article  Google Scholar 

  • Cabrol NA, Grin EA (2010) Lakes on Mars. Elsevier, Amsterdam

    Google Scholar 

  • Clifford SM, Parker TJ (2001) The evolution of the Martian hydrosphere: implications for the fate of a primordial ocean and the current state of the northern plains. Icarus 154:40–79

    Article  Google Scholar 

  • De Hon RA (1992) Martian lake basins and lacustrine plains. Earth Moon Planets 56:95–122

    Article  Google Scholar 

  • Dehouck E, Mangold N, Le Mouélic S, Ansan V, Poulet F (2010) Ismenius Cavus, Mars: a deep paleolake with phyllosilicate deposits. Planet Space Sci 58:941–946

    Article  Google Scholar 

  • Dermott SF, Sagan C (1995) Tidal effects of disconnected hydrocarbon seas on Titan. Nature 374:238–240. doi:10.1038/374238a0

    Article  Google Scholar 

  • Genda H, Abe Y (2005) Effects of oceans on atmospheric loss during the stage of giant impacts. Lunar Planet Sci Conf XXXVI, abstract #2265, Houston

    Google Scholar 

  • Gierlowski-Kordesch EH, Kelts KR (eds) (2000) Lake basins through space and time. AAPG Stud Geol 46:3–34

    Google Scholar 

  • Hambrey M (1994) Glacial environments. CRC Press, Boca Raton

    Google Scholar 

  • Harries PJ (2009a) Epeiric seas: a continental extension of shelf biotas. In: Cilek V, Smith RH (eds) Earth system: history and natural variability. UNESCO–Eolss Publishers, Oxford, UK

    Google Scholar 

  • Harries PJ (2009b) Shelf seas. In: Cilek V, Smith RH (eds) Earth system: history and natural variability. UNESCO–Eolss Publishers, Oxford, UK

    Google Scholar 

  • Hayes A et al (2008) Hydrocarbon lakes on Titan: distribution and interaction with an porous regolith. Geophys Res Lett 35:L09204. doi:10.1029/2008GRL033409

    Article  Google Scholar 

  • Head JW III, Coffin MF (1997) Large igneous provinces: a planetary perspective. In: Mahoney JJ, Coffin MF (eds) Large igneous provinces: continental, oceanic and planetary flood volcanism, vol 100, Geophysical monograph. American Geophysical Union, Washington, DC, pp 411–436

    Google Scholar 

  • Hess HH (1962) History of ocean basins. In: A. E. J. Engel, Harold L. James, B. F. Leonard (eds) Geological Society of America, New York. Petrologic studies: a volume to honor A. F. Buddington. pp 599–820

    Google Scholar 

  • IHO (International Hydrographic Organization) (1994) Hydrographic dictionary, vol 32, 5th edn, Special publication. International Hydrographic Organisation, Monaco

    Google Scholar 

  • Kereszturi A (2010) Lakes beyond the Earth: dry lakebeds on Mars, and active methane-ethane lakes on Titan. In: Meyer PL (ed) Ponds: formation, characteristics, and uses. Nova, New York, pp 125–138

    Google Scholar 

  • Kuchner MJ (2003) Volatile-rich Earth-Mass planets in the habitable zone. Astrophys J 596:L105–L108

    Article  Google Scholar 

  • Léger A, Selsis F, Sotin C, Guillot T, Despois D, Mawet D, Ollivier M, Labèque A, Valette C, Brachet F, Chazelas B, Lammer H (1994) A new family of planets? “Ocean-Planets”. Icarus 169(2):499–504

    Article  Google Scholar 

  • Léger A, Grasset O, Fegley B, Codron F et al (2007) The extreme physical properties of the CoRoT-7b super-Earth. Icarus 213(1):1–11. doi:10.1016/j.icarus.2011.02.004

    Article  Google Scholar 

  • Lewis MW (1999) Dividing the ocean sea. Geogr Rev 89(2):188–214

    Article  Google Scholar 

  • Lowell P (1895) Mars. Houghton Mifflin, New York

    Google Scholar 

  • Lucchitta BK, Ferguson HM, Summers C (1986) Northern sinks on Mars? Lunar Planet Sci Conf 17:32–33, Houston

    Google Scholar 

  • Lunine JI, Atreya SK (2008) The methane cycle on Titan. Nat Geosci 1:159–164

    Article  Google Scholar 

  • Richardson S, Reynolds J (2000) An overview of glacial hazards in the Himalayas. Quat Int 65/66:31–47

    Article  Google Scholar 

  • Ruggieri G (1967) The miocene and later evolution of the Mediterranean Sea. In: Adams CG, Ager DV (eds) Aspects of tethyan biogeography, vol 7, Publication of the systematic association. The Systematics Association, London, pp 283–290

    Google Scholar 

  • Schon SC, Head JW, Fassett CI (2012) An overfilled lacustrine system and progradational delta in Jezero crater, Mars: implications for Noachian climate. Planet Space Sci. doi:10.1016/j.pss.2012.02.003

    Google Scholar 

  • Smith B, Mark D (1999) Ontology with human subjects testing: an empirical investigation of geographic categories. Am J Econ Sociol 58(2):245–272

    Article  Google Scholar 

  • Soderblom LA, Kieffer SW, Becker TL, Brown RH, Cook AF, Hansen CJ, Johnson TV, Kirk RL, Shoemaker EM (1990) Triton’s geyser-like plumes: discovery and basic characterization. Science 250:410–415

    Article  Google Scholar 

  • Sotin C, Lawrence KJ, Reinhardt B, Barnes JW, Brown RH, Hayes AG, Le Mouelic S, Soderblom LA, Buratti BJ, Clark RN, Jaumann R, Soderblom JM, Stephan K, Baines KH, Nicholson PD (2012) Observations of Titan’s northern lakes at 5 microns: implications for the organic cycle and geology. Icarus 221:768–786

    Article  Google Scholar 

  • Stewart RH (2008) Introduction to physical oceanography. Texas A & M University, College Station

    Google Scholar 

  • Turtle EP, Perry JE, McEwen AS, DelGenio AD, Barbara J, West RA, Dawson DD, Porco CC (2009) Cassini imaging of Titan’s high-latitude lakes, clouds, and south-polar surface changes. Geophys Res Lett 36, L2204:16

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Hargitai .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Hargitai, H., Kereszturi, Á., Cornet, T., Illés-Almár, E. (2014). Lake, Sea, and Ocean (Hydrological). In: Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9213-9_639-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9213-9_639-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-9213-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics