Spur and Gully

  • Henrik Hargitai
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-9213-9_634-1


Wall morphology displaying a repeated pattern of branched or unbranched ridges and intervening alcoves.



Branched or linear debris chutes (linear, downslope-oriented depressions) with intervening sharp rocky ridges (spurs) (Schon et al. 2009). Wall may be crenulated by alcoves caused by the gullies (being either fluvial or debris flows) or by landslide scarps. Spur crests may be branched (forming dendritic ridges) (Fig. 1) or unbranched (Fig 2). In several cases, spur-and-gullied wallrocks show layering (Lucchitta et al. 1992, p. 463) (Fig. 3). Upper slopes are steep (45–90°) and bedrock floored, and lower slopes may be occupied by talus at the angle of repose (30–45°) (Howard 1998, p. 300).


Debris Flow Drainage Density Fault Scarp Snow Avalanche Crater Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Allix A (1914) La morphologie glaciaire en Vercors. Recueil des Travaux de L’Institut de Géographie Alpine de l’Université de Grenoble, II, 109–110. Cited by Matthes (1938)Google Scholar
  2. Ashley J (2012) Outcrops in Laplace A. LROC featured image, http://lroc.sese.asu.edu/news/?archives/518-Outcrops-in-Laplace-A.html
  3. Blackwelder E (1942) The process of mountain sculpture by rolling debris. J Geomorphol 4:324–8Google Scholar
  4. Bourgeois O, Mège D, Gourronc M, Bultel B, Massé M and LeDeit L (2011) Extensive glaciation of Valles Marineris (Mars) revealed by sackung, trimlines and ablation tills. EPSC 6, EPSC-DPS2011-255Google Scholar
  5. Ellis MA, Densmore AL, Anderson RS (1999) Development of mountainous topography in the Basin Ranges, USA. Basin Res 11(1):21–41CrossRefGoogle Scholar
  6. Flahaut J, Quantin C, Clenet H, Allemand P, Mustard JF, Thomas P (2012) Pristine Noachian crust and key geologic transitions in the lower walls of Valles Marineris: insights into early igneous processes on Mars. Icarus 221:420–435CrossRefGoogle Scholar
  7. Geertsema M, Schwab JW, Jordan P, Millard TH, Rollerson TP (2010) Hillslope processes. In: Pike RG, Redding TE, Moore RD, Winkler RD, Bladon KD (eds) Compendium of forest hydrology and geomorphology in British Columbia. Land management handbook, vol 66. B.C. Min. For. Range, For. Sci. Prog./FORREX Forum for Research and Extension in Natural Resources, Kamloops, pp 213–273Google Scholar
  8. Gourronc M, Bourgeois O, Mege D, Pochat S, Bultel B, Massé M, Le Deit L, Le Mouélic S, Mercier D (2014) One million cubic kilometers of fossil ice in Valles Marineris: relicts of a 3.5 Gy old glacial landsystem along the Martian equator. Geomorphology 204:235–255CrossRefGoogle Scholar
  9. Howard AD (1998) Long profile development of bedrock channels: interaction of weathering, mass wasting, bed erosion, and sediment transport. In: Tinkler KJ, Wohl EE (eds) Rivers over rock: fluvial processes in bedrock channels. American Geophysical Union, San Francisco, pp 297–321Google Scholar
  10. Howard AD, Selby MJ (1994) Rock slopes. In: Abrahams AD, Parsons AJ (eds) Geomorphology of desert environments. Chapman and Hall, LondonGoogle Scholar
  11. Lucchitta BK (1978) Morphology of chasma walls. Mars J Res US Geol Surv 6:651–662Google Scholar
  12. Lucchitta BK, McEwen AS, Clow GD, Geissler PE, Singer RB, Schultz RA, Squyres SW (1992) The canyon system on Mars. In: Kiefer HH, Jakosky BM, Snyder CW, Matthews MS (eds) Mars. University of Arizona Press, Tucson, pp 453–492Google Scholar
  13. Matthes FE (1938) Alvalanche sculpture in the Sierra Nevada of California. Int Assoc Sci Hydrol Bull 23:631–7Google Scholar
  14. NSSH (2008) Glossary of landform and geologic terms. In: Soil survey handbook, part 629. U.S. Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://soils.usda.gov/technical/handbook/
  15. Peulvast JP, Mege D, Chiciak J, Costard F, Masson PL (2001) Morphology, evolution and tectonics of Valles Marineris wallslopes (Mars). Geomorphology 37(3–4):329–352CrossRefGoogle Scholar
  16. Rapp A (1960) Talus slopes and mountain walls at Tempelfjorden, Spitsbergen: a geomorphological study of the denudation of slopes in an arctic locality, vol 119, Norsk Polarinstitutt Skrifter. Oslo University Press, OsloGoogle Scholar
  17. Roach LH, Mustard JF, Swayze G, Milliken RE, Bishop JL, Murchie SL, Lichtenberg K (2010) Hydrated mineral stratigraphy of Ius Chasma, Valles Marineris. Icarus 206:253–268CrossRefGoogle Scholar
  18. Schon SC, Head JW (2012) Gasa impact crater, Mars: very young gullies formed from impact into latitude-dependent mantle and debris-covered glacier deposits? Icarus 218:459–477CrossRefGoogle Scholar
  19. Schon SC, Head JW, Fassett CI (2009) Unique chronostratigraphic marker in depositional fan stratigraphy on Mars: evidence for ca. 1.25 Ma gully activity and surficial meltwater origin. Geology 7(3):207–210. doi:10.1130/G25398A.1CrossRefGoogle Scholar
  20. Scully JEC, Russell CT, Yin A, Jaumann R, McSween HY, Raymond CA, Reddy V, Le Corre L (2013) Curvilinear, Interconnecting Vestan Gullies as evidence for transient water flow. EPSC 8, EPSC2013-242-2Google Scholar
  21. Senthil Kumar P, Keerthi V, Senthil Kumar A, Mustard J, Gopala Krishna B, Amitab OLR, Kring DA, Kiran Kumar AS, Goswami JN (2013) Gullies and landslides on the Moon: evidence for dry-granular flows. J Geophys Res Planets 118:206–223. doi:10.1002/jgre.20043CrossRefGoogle Scholar
  22. Schultz RA (1991) Structural development of Coprates Chasma and Western Ophir Planum, Valles Marineris Rift. Mars J Geophys Res 96(E5):22777–22792. doi:10.1029/91JE02556CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Planetary Science Research GroupEötvös Loránd University, Institute of Geography and Earth SciencesBudapestHungary