Graben System

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-9213-9_604-1

Definition

System of large, lithospheric scale extensional tectonic surface structures (graben) (Hauber et al. 2010).

Synonyms

Description

A system of long, narrow lineaments of negative relief.

Subtypes

Classification based on geometry:
  1. (1)

    Radiating graben system (Venus (Fig. 1); Mars: Tharsis, Alba (Fig. 2); Mercury: Pantheon Fossae (Fig. 3)). This type is the most intensively studied graben system (Ernst et al. 2003).

     
  2. (2)

    Circumferential graben system (Venus; Mars: Alba (Fig. 4)).

     
  3. (3)

    Linear graben system (Venus; Mars: Alba) (Fig. 5).

     
  4. (4)

    Rift or rift zone: “Rift zones” on Venus are defined as “numerous and densely packed extensional structures” (Ivanov and Head 2011) (Figs. 1 and 6). “Rifts” on Mars are large fault-bounded tectonic structures...

Keywords

Rift Zone Lineament System Rift Valley Rift System Continental Rift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. Basilevsky AT, Head JW (2000) Rifts and large volcanoes of Venus/global assessment of their age relationships with regional plains. J Geophys Res 105:24,583–25,611CrossRefGoogle Scholar
  2. Basilevsky AT, Head JW (2002) Venus: analysis of the degree of impact crater deposit degradation and assessment of its use for dating geological units and features. J Geophys Res 107(E8). doi:10.1029/2001JE001584Google Scholar
  3. Cherkashina OS, Guseva EN, Krassilnikov AS (2004) Mapping of rift zones on Venus, preliminary results: spatial distribution, relationship with regional plains, morphology of fracturing, topography and style of volcanism. 35th Lunar Planet Sci Conf, abstract #1525, HoustonGoogle Scholar
  4. Ernst RE, Desnoyers DW, Head JW, Grosfils EB (2003) Graben–fissure systems in Guinevere Planitia and Beta Regio (264°–312°E, 24°–60°N), Venus, and implications for regional stratigraphy and mantle plumes. Icarus 164:282–316CrossRefGoogle Scholar
  5. Freed AM, Solomon SC, Watters TR, Phillips RJ, Zuber MT (2009) Could Pantheon Fossae be the result of the Apollodorus crater-forming impact within the Caloris basin, Mercury? Earth Planet Sci Lett 285:320–327CrossRefGoogle Scholar
  6. Guseva EN (2007) Topography and extension estimates for rift zones of Beta and Alpha Regions. 46th Vernadsky-Brown microsymposium on comparative planetology, abstract #m46_20, Moscow, RussiaGoogle Scholar
  7. Guseva EN (2008) Comparative analysis of topography of the Venusian rifts and terrestrial continental rifts in Africa. 39th Lunar Planet Sci Conf, abstract #1063, HoustonGoogle Scholar
  8. Hansen VL, Willis JJ, Banerdt WB (1997) Tectonic overview and synthesis. In: Bougher SW, Hunten DM, Phillips RJ (eds) Venus II geology, geophysics, atmosphere, and solar wind environment. University of Arizona Press, Tucson, pp 797–844Google Scholar
  9. Hauber E, Kronberg P (2005) The large Thaumasia graben on Mars: is it a rift? J Geophys Res 110:E07003. doi:10.1029/2005JE002407Google Scholar
  10. Hauber E, Grott M, Kronberg P (2010) Martian rifts: structural geology and geophysics. Earth Planet Sci Lett 294:393–410CrossRefGoogle Scholar
  11. Head JW, Wilson L, Mitchell KL (2003) Generation of recent massive water floods at the Cerberus Fossae, Mars by the dike emplacement, cryospheric cracking, and confined aquifer groundwater release. Geophys Res Lett 30(11):1577. doi:10.1029/2003GL017135CrossRefGoogle Scholar
  12. Head JW, Murchie SL, Prockter LM, Solomon SC, Strom RG, Chapman CR, Watters TR, Blewett DT, Gillis-Davis JJ, Fassett CI, Dickson JL, Hurwitz DM, Ostrach LR (2009) Evidence for intrusive activity on Mercury from the first MESSENGER flyby. Earth Planet Sci Lett 285(3–4):251–262. doi:10.1016/j.epsl.20 09.03.0 08CrossRefGoogle Scholar
  13. Ivanov MA, Head JW (2011) Global geological map of Venus. Planet Space Sci 59:1559–1600Google Scholar
  14. Kronberg P, Hauber E, Grott M, Werner SC, Schäfer T, Gwinner K, Giese B, Masson P, Neukum G (2007) Acheron Fossae, Mars: tectonic rifting, volcanism, and implications for lithospheric thickness. J Geophys Res 112:E04005. doi:10.1029/2006JE002780Google Scholar
  15. Masursky H, Eliason E, Ford PG et al (1980) Pioneer-Venus radar results – geology from images and altimetry. J Geophys Res 85:8232–8260CrossRefGoogle Scholar
  16. Mege D, Masson P (1996) A plume tectonics model for the Tharsis province. Mars Planet Space Sci 44(12):1499–1546CrossRefGoogle Scholar
  17. Price M (1995) Tectonic and volcanic map of Venus. Princeton University, Department of Geological Sciences, PrincetonGoogle Scholar
  18. Senske DA, Saunders RS, Stofan ER et al (1994) The global geology of Venus: classification of landforms and geologic history. Lunar Planet Sci XXV:1245–1246, HoustonGoogle Scholar
  19. Studd D, Ernst RE, Samson C (2011) Radiating graben–fissure systems in the Ulfrun Regio area, Venus. Icarus 215:279–291CrossRefGoogle Scholar
  20. Vetterlein J, Roberts GP (2010) Structural evolution of the Northern Cerberus Fossae graben system, Elysium Planitia, Mars. J Struct Geol 32:394–406CrossRefGoogle Scholar
  21. Wilkins SJ, Schultz RA (2003) Cross faults in extensional settings: stress triggering, displacement localization, and implications for the origin of blunt troughs at Valles Marineris. Mars J Geophys Res 108(E6):5056. doi:10.1029/2002JE001968CrossRefGoogle Scholar
  22. Wilson L, Head JW (2002) Tharsis-radial graben systems as the surface manifestation of plume-related dike intrusion complexes: models and implications. J Geophys Res 107. doi:10.1029/2001JE001593Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Planetary Science Research GroupEötvös Loránd University, Institute of Geography and Earth SciencesBudapestHungary
  2. 2.Vernadsky InstituteMoscowRussia