Skip to main content

Linear Gullies (Mars)

  • Living reference work entry
  • First Online:
Encyclopedia of Planetary Landforms

Description/Morphometry

This feature appears only on sandy slopes (especially dune slopes). It consists primarily of a long (few hundred meters up to 2.5 km) groove of near-uniform width (generally a few to ten meters wide and sometimes with slight narrowing downslope) and is near linear (but may contain zones of low-to-high sinuosity) (Fig. 1). Groove depth is usually from <1 m to 2 m. It is commonly surrounded by lateral deposits interpreted as levees. The groove is generally topped by a small alcove and/or converging small grooves (Fig 2). Downslope, the groove abruptly ends: sometimes ending with a terminal pit or sometimes a series of divergent small grooves, each with a terminal pit, or chain of pits with diameter often larger than the groove width, but lacking a debris apron (Figs. 2d and 3). Grooves sometimes converge downslope (Fig. 2). Except within the very distal portion, they do not diverge (Costard et al. 2002; Diniega et al. 2013; Mangold et al. 2003; Miyamoto et al. 2004)....

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aharonson O, Zuber MT, Smith DE, Neumann GA, Feldman WC, Prettyman TH (2004) Depth, distribution, and density of CO2 deposition on mars. J Geophys Res 109(E18):E05004. doi:10.1029/2003JE002223

    Google Scholar 

  • Bridges NT, Herkenhoff KE, Titus TN, Kieffer HH (2001) Ephemeral dark spots associated with Martian Gullies. Lunar Planet Sci Conf 32, abstract #2126, Houston

    Google Scholar 

  • Coleman KA, Dixon JC, Howe KL, Roe LA, Chevrier V (2009) Experimental simulation of Martian gully forms. Planet Space Sci 57:711–716. doi:10.1016/j.pss.2008.11.002

    Article  Google Scholar 

  • Conway SJ, Lamb MP, Balme MR, Towner MC, Murray JB (2011) Enhanced runout and erosion by overland flow at low pressure and sub-freezing conditions: experiments and application to Mars. Icarus 211:443–457. doi:10.1016/j.icarus.2010.08.026

    Article  Google Scholar 

  • Costard F, Forget F, Mangold N, Peulvast JP (2002) Formation of recent Martian debris flows by melting of near-surface ground ice at high obliquity. Science 295:110–113

    Article  Google Scholar 

  • Di Achille G, Silvestro S, Ori GG (2008) Defrosting processes on dark dunes: new insights from HiRISE images at Noachis and Aonia Terrae, Mars. In: Planetary dunes workshop, pp 27–28

    Google Scholar 

  • Diniega S, Hansen CJ, McElwaine JN, Hugenholtz CH, Dundas CM, McEwen AS, Bourke MC (2013) A new dry hypothesis for the formation of Martian linear gullies. Icarus 225(1):526–537. doi:10.1016/j.icarus.2013.04.006

    Article  Google Scholar 

  • Dundas CM, Diniega S, Hansen CJ, Byrne S, McEwen AS (2012) Seasonal activity and morphological changes in Martian gullies. Icarus 220(1):124–143. doi:10.1016/j.icarus.2012.04.005

    Article  Google Scholar 

  • Gargani J, Jouannic G, Costard F, Ori GG, Marmo C, Schmidt F, Lucas A, Busson J (2012) How much liquid water was there on Martian dunes? In: EGU general assembly conference abstracts, 14, p 11720

    Google Scholar 

  • Hansen CJ, McEwen A, Okubo C, Bridges N, Byrne S, Gulick V, Herkenhoff K, Kolb K, Mellon M, Russell P, HiRISE Team (2007) HiRISE observations of Mars’ southern seasonal frost sublimation. Lunar Planet Sci Conf 38, abstract #1906, Houston

    Google Scholar 

  • Jouannic G, Gargani J, Costard F, Ori GG, Marmo C, Schmidt F, Lucas A (2012) Morphological and mechanical characterization of gullies in a periglacial environment: the case of the Russell crater dune (Mars). Planet Space Sci 71:38–54. doi:10.1016/j.pss.2012.07.005

    Article  Google Scholar 

  • Kereszturi A, Mohlmann D, Berczi S, Ganti T, Kuti A, Sik A, Horvath A (2009) Recent rheologic processes on dark polar dunes of Mars: driven by interfacial water? Icarus 201:492–503. doi:10.1016/j.icarus.2009.01.014

    Article  Google Scholar 

  • Kieffer HH (2006) Cold jets in the Martian polar caps. J Geophys Res 112:E08005. doi:10.1029/2006JE02816

    Google Scholar 

  • Mangold N, Costard F, Forget F (2003) Debris flows over sand dunes on Mars: evidence for liquid water. J Geophys Res 108:5027. doi:10.1029/2002JE001958

    Article  Google Scholar 

  • Mangold N, Mangeney A, Migeon V, Ansan V, Lucas A, Baratoux D, Bouchut F (2010) Sinuous gullies on Mars: frequency, distribution, and implications for flow properties. J Geophys Res 115:E11001

    Article  Google Scholar 

  • Miyamoto H, Dohm JM, Baker VR, Beyer RA, Bourke M (2004) Dynamics of unusual debris flows on Martian sand dunes. Geophys Res Lett 31:L13701. doi:10.1029/2004GL020313

    Article  Google Scholar 

  • Reiss D, Jaumann R (2003) Recent debris flows on Mars: seasonal observations of the Russell Crater dune field. Geophys Res Lett 30(6):1321. doi:10.1029/2002GL016704

    Article  Google Scholar 

  • Reiss D, Erkeling G, Bauch KE, Hiesinger H (2010) Evidence for present day gully activity on the Russell crater dune field, Mars. Geophys Res Lett 37:L06203

    Google Scholar 

  • Vedie E, Costard F, Font M, Lagarde JL (2008) Laboratory simulations of Martian gullies on sand dunes. Geophys Res Lett 35:L21501. doi:10.1029/2008GL035638

    Article  Google Scholar 

  • Vincendon M, Forget F, Mustard J (2010) Water ice at low to midlatitudes on Mars. J Geophys Res 115(E14):E10001. doi:10.1029/2010JE003584

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serina Diniega .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Diniega, S. (2014). Linear Gullies (Mars). In: Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9213-9_582-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9213-9_582-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-9213-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics