Skip to main content

Multiring Basin, Orientale Type

  • Living reference work entry
  • First Online:
Encyclopedia of Planetary Landforms

Definition

Large circular impact structure that possesses at least two concentric asymmetric scarps, one of which may be the original crater rim (Melosh 1989).

Category

A type of multiring basin.

Synonyms

If lava-covered: mare (on the Moon); Multiringed basin

Note

This article does not discuss lava cover in multiring basins: see mare. The basin discussed here (the crater cavity) is the feature underlying the mare lavas.

Description

Orientale-type multiring basins exhibit a nearly symmetric internal peak ring inside the crater rim and one or several additional rings, which are asymmetric scarps, outside the rim of the crater (Collins 2002). Some researchers find as many as six concentric rings in the largest lunar basins. Basin rings – both interior and exterior ones – are spaced at a constant factor, √2, defined by Hartmann and Kuiper (1962): the diameter of any given ring is a multiple of an integer power of √2 or

$$ {\mathrm{D}}_{\mathrm{n}}={\left(\surd...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alexopoulos JS, McKinnon WB (1993) Morphology of large impact craters and basins on Venus: implications for ring formation. Lunar Planet Sci Conf XXIV:15–16, Houston

    Google Scholar 

  • Alexopoulos JS, McKinnon WB (1994) Large impact craters and basins on Venus: implications for ring mechanics on the terrestrial planets. In: Dressler BO, Grieve RAF, Sharpton VL (eds) Large meteorite impacts and planetary evolution, GSA SP-293. Geological Society of America, Boulder, pp 178–198

    Google Scholar 

  • Baldwin RB (1949) The face of the Moon. University of Chicago Press, Chicago

    Google Scholar 

  • Baldwin RB (1972) The tsunami model of the origin of ring structures concentric with large lunar craters: Physics Earth and Planetary Interiors, 6:3270–339

    Google Scholar 

  • Baldwin RB (1978) An overview of impact cratering. Meteoritics 13:364–379

    Google Scholar 

  • Baldwin RB (1981) On the tsunami theory of the origin of multi-ring basins. In: Multi-ring basins: formation and evolution. Lunar Planet Sci Conf 12A:275–288, Houston

    Google Scholar 

  • Baum R, Whitaker EA (2007) Discovery and nomenclature of the Mare Orientale. J Br Astron Assoc 117(3):129–135

    Google Scholar 

  • Chapman CR, Cohen BA, Grinspoon DH (2007) What are the real constraints on the existence and magnitude of the late heavy bombardment? Icarus 189:233–245

    Article  Google Scholar 

  • Cintala M, Grieve R (1998) Scaling impact melting and crater dimensions: implications for the lunar cratering record. Meteorit Planet Sci 33:889–891

    Article  Google Scholar 

  • Collins G (2002) Numerical modelling of large impact crater collapse. PhD thesis, University of London

    Google Scholar 

  • Darney M (1933) Le systeme Imbrien. Bull Astron Fr 47:452–457. Cited by Hartmann (1981)

    Google Scholar 

  • Elger TG (1895) The Moon – a full description and map of its principal physical features. George Philip & Son, London

    Google Scholar 

  • Fielder G (1961) Structure of the Moon’s surface. Pergamon Press, Oxford. Cited by Hartmann 2011

    Google Scholar 

  • French BM (1998) Traces of Catastrophe: A Handbook of Shock-metamorphic Effects in Terrestrial Meteorite Impact Structures, LPI Contribution No. 954, Lunar Planetary Institute, Houston, TX

    Google Scholar 

  • Gilbert GK (1893) The Moon’s face, a study of the origin of its features, vol 12. Bulletin of the Philosophical Society, Washington, DC, p 262

    Google Scholar 

  • Grieve RAF, Cintala MJ (1995) Impact melting on Venus: some considerations for the nature of the cratering record. Icarus 114(1):68–79

    Article  Google Scholar 

  • Grieve RA, Therriault AM, Cintala MJ (2004) Impact basins and crustal evolution of the early Earth. American Geophysical Union, spring meeting 2004, abstract #V11A-03

    Google Scholar 

  • Hartmann WK (1981) Discovery of multi-ring basins: gestalt perception in planetary science. In: Schultz PH, Merrill RB (eds) Multi-ring basins. Proc Lunar Planet Sci 12A:79–90. Pergamon Press, New York

    Google Scholar 

  • Hartmann WK (2011) Discoveries and early research papers. In: Multi-ring impact basing on the Moon. Planetary Science Institute, Tucson. http://www.psi.edu/epo/multiring_impact_basins/multiring_impact_basins.html. Accessed 11 Oct 2011

  • Hartmann WK, Kuiper GP (1962) Concentric structures surrounding lunar basins. Commun Lunar Planet Lab 1:51–66

    Google Scholar 

  • Hartmann WK, Wood CA (1971) Origin and evolution of multi ring basins. Moon 3(3):78

    Google Scholar 

  • Head JW (1974) Orientale multi-ringed basin interior and implications for the petrogenesis of lunar highland samples. Moon 11:327–356

    Article  Google Scholar 

  • Head JW III (2010) Transition from complex craters to multi-ringed basins on terrestrial planetary bodies: scale-dependent role of the expanding melt cavity and progressive interaction with the displaced zone. Geophs Res Lett 37:L02203. doi:10.1029/2009GL041790

    Article  Google Scholar 

  • Head JW, Murchie S, Mustard JF, Pieters CM, Neukum G, McEwen A, Greeley R, Nagel E, Belton MJS (1993) Lunar impact basins: new data for the western limb and far side (Orientale and South Pole-Aitken Basins) from the first Galileo flyby. J Geophys Res 98(E9):17149–17181. doi:10.1029/93JE01278

    Article  Google Scholar 

  • Head JW, Smith DE, Zuber MT, Neumann G, Fassett C, LOLA team (2009) Lunar orientale basin and vicinity: topographic characterization from Lunar Orbiting Laser Altimeter (LOLA) data. The 50th Vernadsky–Brown microsymposium on comparative planetology. Russian Academy of Sciences, Moscow, 12–14 Oct 2009

    Google Scholar 

  • Hiesinger H, Head JW III (2002) Topography and morphology of the Argyre Basin, Mars: implications for its geologic and hydrologic history. Planet Space Sci 50:939–981

    Article  Google Scholar 

  • Hiesinger H, Head III JW (2003) Lunar South Pole-Aitken impact basin: clementine topography and implications for the interpretation of basin structure and stratigraphy. Microsymposium 38, MS101, Vernadsky Institute/Brown University, Moscow

    Google Scholar 

  • Kuiper GP (1954) On the origin of the lunar surface features. Proc Natl Acad Sci 40:1096–1112

    Article  Google Scholar 

  • Kuiper GP (1964) Infrared spectra of stars and planets: IV. The spectrum of Mars, 1-2.5 microns, and the structure of its atmosphere. Communications of the Lunar and Planetary Laboratory 2:79

    Google Scholar 

  • McKinnon WB (1981) Application of ring tectonic theory to Mercury and other solar system bodies. In: Schultz PH, Merrill RB (eds) Multi-ring basins: formation and evolution, Proc Lunar Planet Sci Conf 12A:259–273, Houston

    Google Scholar 

  • McKinnon WB, Zahnle KJ, Ivanov BA, Melosh HJ (1997) Cratering on Venus: models and observations. In: Bougher SW, Hunten DM, Phillips RJ (eds) Venus II–geology, geophysics, atmosphere, and solar wind environment. University of Arizona Press, Tucson, pp 969–1014

    Google Scholar 

  • Melosh HJ (1982) A schematic model of crater modification by gravity, J Geophys Res, 87:371–380

    Article  Google Scholar 

  • Melosh HJ (1989) Impact cratering: a geologic process. Oxford University Press, New York

    Google Scholar 

  • Melosh HJ, McKinnon WB (1978) The mechanics of ringed basin formation. Geophys Res Lett 5:985–988

    Article  Google Scholar 

  • Moore HJ, Hodges CA, Scott DH (1974) Multiringed basins – illustrated by Orientale and associated features. Proc 5th Lunar Planet Sci Conf 1:71–100, Houston. (A75-39540 19–91). Pergamon Press, New York

    Google Scholar 

  • Murchie SL, Watters TR, Robinson MS, Head JW, Strom RG, Chapman CR, Solomon SC, McClintock WE, Prockter LM, Domingue DL, Blewett DT (2008) Geology of the Caloris basin, Mercury: a view from MESSENGER. Science 321(5885):73–76. doi:10.1126/science.1159261

    Article  Google Scholar 

  • Murray JB (1980) Oscillating peak model of basin and crater formation. Moon Planet 22:269–291

    Article  Google Scholar 

  • Murray BC, Belton MJS, Danielson GE, Davies ME, Gault DE, Hapke B, O’Leary B, Strom RG, Suomi V, Trask N (1974) Mercury’s surface: preliminary description and interpretation from Mariner 10 pictures. Science 185:169–179

    Article  Google Scholar 

  • Neison E (1876) The Moon and the condition and configurations of its surface. Longmans, Green, London

    Google Scholar 

  • Neumann GA, Zuber MT, Smith DE, Lemoine FG (1996) The lunar crust: global structure and signature of major basins. J Geophys Res 101:16841–16843

    Article  Google Scholar 

  • Öhman T (2009) The structural control of polygonal impact craters. Res Terrae, Ser A, No 28, Oulu

    Google Scholar 

  • Pike RA (1974) Depth/diameter relations of fresh lunar craters: revision from spacecraft data. Geophys Res Lett 1:291–294

    Article  Google Scholar 

  • Potts LV, von Frese RRB (2003) Lunar basin ring and transient cavity attributes from spectrally correlated free-air and terrain gravity correlations. J Geophys Res 108:E4. doi:10.1029/2000JE001446

    Google Scholar 

  • Potts LV, von Frese RRB (2005) Impact-induced mass flow effects on lunar shape and the elevation dependence of nearside Maria with longitude. Phys Earth Planet Inter 153:165–174

    Article  Google Scholar 

  • Potts LV, von Frese RR, Leftwich TE, Taylor PT, Shum CK, Li R (2004) Gravity-inferred crustal attributes of visible and buried impact basins on Mars. J Geophys Res 109:E09009. doi:10.1029/2003JE002225

    Google Scholar 

  • Runcorn SK (1974) On the origin of mascons and moonquakes. Proc 5th Lunar Planet Sci Conf V:3115–3126, Houston

    Google Scholar 

  • Schaber GG, Strom RG, Moore HJ, Soderblom LA, Kirk RL, Chadwick DJ, Dawson DD, Gaddis LR, Boyce JM, Russell J (1992) Geology and distribution of impact craters on Venus: what are they telling us? J Geophys Res 97(E8):13257–13301. doi:10.1029/92JE01246

    Article  Google Scholar 

  • Schenk PM (1998) Geology of Gilgamesh, Ganymede: new insights from stereo and topographic mapping. Lunar Planet Sci XXIX, abstract #1949, Houston

    Google Scholar 

  • Schenk PM, McKinnon WB (2008) A gallery of multiring basins on Europa, Ganymede, and Callisto. Large meteorite impacts and planetary evolution IV. LPI, #3107 Houston, TX

    Google Scholar 

  • Shoemaker EM, Hackman RJ (1962) Stratigraphic basis for a lunar time scale. In: Kopal Z, Mikhailov ZK (eds) The moon, vol 14, IAU symposium. Academic, London, pp 289–300

    Google Scholar 

  • Solomon SC, Stephens SK, Head JW (1982) On Venus impact basins: viscous relaxation of topographic relief. J Geophys Res 87(B9):7763–7771. doi:10.1029/JB087iB09p07763

    Article  Google Scholar 

  • Spudis PD (1986) The materials and formation of the Imbrium Basin. In: Spudis PD, Ryder G (eds) Workshop on the geology and petrology of the Apollo 15 landing site. A Lunar and Planetary Institute Workshop, Houston, TX. LPI technical report 86–03. pp 100–104

    Google Scholar 

  • Spudis PD (1993) The geology of multi-ring impact basins: the Moon and other planets. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Spudis PD (1994) The large impact process inferred from the geology of lunar multiring basins. In: Dressler BO, Grieve RAF, Sharpton VL (eds) Large meteorite impacts and planetary evolution, Special paper 293. Geological Society of America, Boulder

    Google Scholar 

  • Spudis PD (2005) The geology of multi-ring impact basins. Cambridge University Press, New York, 277 pp

    Google Scholar 

  • Spurr JE (1944) Geology applied to selenology, vol 1. Science Press, Lancaster. Cited by Hartmann (1981)

    Google Scholar 

  • Stöffler D, Ryder G (2001) Stratigraphy and isotope ages of lunar geologic units: chronological standard for the inner solar system. Space Sci Rev 96:9–54

    Article  Google Scholar 

  • Urey HC (1952) The planets, their origin and development. Yale University Press, New Haven. Cited by Hartmann (1981)

    Google Scholar 

  • Van Dorn WG (1968) Tsunamis on the Moon? Nature 220:1102–1107. doi:10.1038/2201102a0

    Article  Google Scholar 

  • Watters TR, Head JW, Solomon SC, Robinson MS, Chapman CR, Denevi BW, Fassett CI, Murchie SL, Strom RG (2009) Evolution of the Rembrandt impact basin on Mercury. Science 324(5927):618

    Google Scholar 

  • Wieczorek MA, Phillips RJ (1999) Lunar multiring basins and the cratering process. Icarus 139:246–259

    Article  Google Scholar 

  • Wilhelms DE, Hodges CA, Pike RJ (1977) Nested-crater model of lunar ringed basins. In: Impact and explosion cratering: planetary and terrestrial implications. Proceedings of the symposium on planetary cratering mechanics, Flagstaff, 13–17 Sept 1976. (A78-44030 19–91). Pergamon Press, New York, pp 539–562

    Google Scholar 

  • Wood CA (2003) The modern Moon. A personal view. Sky Publishing, Cambridge, MA

    Google Scholar 

  • Wood CA, Head JW (1976) Comparison of impact basins on Mercury, Mars and the moon. Lunar Planet Sci Conf VII 3: 3629–3651. (A77-34651 15–91). Pergamon Press, New York

    Google Scholar 

  • Wood CA, Tam W (1993) Morphologic classes of impact basins on Venus. Lunar Planet Sci Conf XXIV:1535–1536, Houston

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laramie V. Potts .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Potts, L.V., Hargitai, H. (2014). Multiring Basin, Orientale Type. In: Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9213-9_511-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9213-9_511-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-9213-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics