Skip to main content

Impact Melt Flow

  • Living reference work entry
  • First Online:
  • 89 Accesses

Definition

An impact melt flow is a solidified accumulation of impact-generated melt that, while molten, coalesces and flows downslope, creating a landform with lobate distal margins.

Synonyms

Lava-like flow

Description

Impact melt flows are characterized by their lobate margins and, often, a centralized, leveed channel (Fig. 1; Howard and Wilshire 1975; Hawke and Head 1977; Bray et al. 2010; Denevi et al. 2012). Melt flows exhibit an array of morphologies, ranging from broad and veneer-like to narrow and fingerlike (Bray et al. 2010; Denevi et al. 2012; Neish et al. 2014). Flows interact with fragmental impact debris, and while generally free of fragmental materials, unmelted blocks are not uncommon (Fig. 2). In addition to impact melt flows associated with the ejecta blanket, small localized flows form on interior crater walls. Flows of melt inside a crater are often associated with erosive channels (Fig. 3; Bray et al. 2010).

Fig. 1
figure 1

Impact melt flow NE of Gibbs crater, Moon,...

This is a preview of subscription content, log in via an institution.

References

  • Asimow PD, Wood JA (1992) Fluid outflows from Venus impact craters: analysis from Magellan data. JGR Planets 97:13643–13665

    Article  Google Scholar 

  • Barlow NG (2005) A review of Martian impact crater ejecta structures and their implications for target properties. In: Kenkmann T, Hörz F, Deutsch A (eds) Large meteorite impacts III. GSA special paper, vol 384. Geological Society of America, Washington DC, pp 433–442

    Google Scholar 

  • Beach MJ, Head JW, Ostrach LR, Robinson MS, Denevi BW, Solomon SC (2012) The influence of pre-existing topography on the distribution of impact melt on Mercury. Lunar Planet Sci Conf, abstract 1335, Houston

    Google Scholar 

  • Boyce J, Barlow N, Mouginis-Mark P, Stewart S (2010) Rampart craters on Ganymede: Their implications for fluidized ejecta emplacement. Meteoritics and Planet Sci 45: 638–661

    Google Scholar 

  • Bray VJ, Tornabene LL, Keszthelyi LP, McEwen AS, Hawke BR, Giguere TA, Kattenhorn SA, Garry WB, Rizk B, Caudill CM, Gaddis LR, van der Bogert CH (2010) New insight into lunar impact melt mobility from the LRO camera. Geophys Res Lett 37:L21202. doi:10.1029/2010GL044666

    Article  Google Scholar 

  • Bray VJ, Artemieva N, Neish CD, McEwen AS, McElwaine J (2013) Impact melt entrained in ballistic ejecta of lunar craters. Lunar Planet Sci Conf, abstract 2782, Houston

    Google Scholar 

  • Campbell BA, Carter LM, Campbell DB, Nolan M, Chandler J, Ghent RR, Hawke BR, Anderson RF, Wells K (2010) Earth-based 12.6-cm wavelength radar mapping of the Moon: new views of impact melt distribution and mare physical properties. Icarus 208:565–573

    Article  Google Scholar 

  • Carr MH, Crumpler LS, Cutts JA, Greeley R, Guest JE, Masursky H (1977). Martian impact craters and emplacement of ejecta by surface flow. J Geophys Res 82: 4055–4065

    Google Scholar 

  • Carter LM, Neish CD, Bussey DBJ, Spudis PD, Patterson GW, Cahill JT, Raney RK (2012) Initial observations of lunar impact melts and ejecta flows with the Mini-RF radar. J Geophys Res 117:E00H09. doi:10.1029/2011JE003911

    Google Scholar 

  • Chadwick DJ, Schaber GG (1993) Impact crater outflows on Venus: morphology and emplacement mechanisms. JGR Planets 98:20891–20902

    Article  Google Scholar 

  • Cintala MJ, Grieve RAF (1998) Scaling impact melting and crater dimensions: implications for the lunar cratering record. Meteor Planet Sci 33:889–912

    Article  Google Scholar 

  • Denevi BW, Koeber SD, Robinson MS, Garry WB, Hawke BR, Tran TN, Lawrence SJ, Laszlo LP, Barnouin OS, Ernst CM, Tornabene LL (2012) Physical constants on impact melt properties from lunar reconnaissance orbiter camera images. Icarus 219:665–675

    Article  Google Scholar 

  • Grieve RAF, Cintala MJ (1997) Planetary differences in impact melting. Adv Space Res 20:1551–1560

    Article  Google Scholar 

  • Hawke BR, Head JW (1977) Impact melt on lunar crater rims. In: Roddy DJ, Pepin RO, Merrill RB (eds) Impact and explosion cratering. Pergamon Press, New York, pp 815–841

    Google Scholar 

  • Howard KA, Wilshire HG (1975) Flows of impact melt at lunar craters. J Res US Geol Surv 3:237–251

    Google Scholar 

  • Mattingly TK, El-Bax F, Laidley RA (1972) Observations and impressions from lunar orbit. In: Apollo 16 preliminary science report. NASA SP-315, pp 28-1–28-16

    Google Scholar 

  • Melosh HJ (1989) “Ejecta Deposits”. In: Impact Cratering: A Geologic Process. Oxford Univ. Press, New York, pp. 87–111

    Google Scholar 

  • Morris AR, Mouginis-Mark PJ, Garbeil H. (2010) Possible impact melt and debris flows at Tooting Crater, Mars. Icarus 209: 369–389

    Google Scholar 

  • MESSENGER Science Team (2013) http://messenger.jhuapl.edu/gallery/sciencePhotos/image.php?image_id=1052. Accessed online

  • Neish CD, Madden J, Carter LM, Hawke BR, Giguere T, Bray VJ, Osinski GR, Cahill JTS (2014) Global distribution of lunar impact melt flows. Icarus 239:105–117

    Google Scholar 

  • Oberbeck VR (1975) The role of ballistic erosion and sedimentation in lunar stratigraphy. Rev Geophys 12:337–362

    Article  Google Scholar 

  • Öhman T, Kring DA (2012) Photogeologic analysis of impact melt-rich lithologies in Kepler crater that could be sampled by future missions. JGR Planets. doi:10.1029/2011JE003918

    Google Scholar 

  • Osinski GR (2004) Impact melt rocks from the Ries structure, Germany: an origin as impact melt flows? Earth Planet Sci Lett 226:529–543

    Article  Google Scholar 

  • Osinski GR, Tornabene LL, Grieve RAF (2011) Impact ejecta emplacement on terrestrial planets. Earth Planet Sci Lett 310:167–181

    Article  Google Scholar 

  • Shoemaker EM, Batson RM, Holt HE, Morris EC, Rennilson JJ, Whitaker EA (1968) Television observations from Surveyor VII. In: Surveyor VII mission report, Part II. Science results, JPL technical report 32-1264, pp 9–76

    Google Scholar 

  • Stopar JD, Hawke BR, Robinson MS, Denevi BW, Giguere TA (2012) Distribution, occurrence and degradation of impact melt associated with small lunar craters. 43rd Lunar Planet Sci Conf, abstract #1645, Houston

    Google Scholar 

  • Tornabene LL, Osinski GR, McEwen AS, Boyce JM, Bray VJ, Caudill CM, Grant JA, Hamilton CW, Mattson S, Mouginis-Mark PJ (2012) Widespread crater-related pitted materials on Mars: further evidence for the role of target volatiles during the impact process. Icarus 220:348–368

    Article  Google Scholar 

  • Williams DA, O’Brien DP, Schenk PM, Denevi BW, Carsenty U, Marchi S, Scully JEC, Jaumann R, De Sanctis MC, Palomba E, Ammannito F, Longobardo A, Magni G, Frigeri A, Russell CT, Raymond CA, Davison TM, Dawn Science Team (2014) Lobate and flow-like features on asteroid Vesta. Planet Space Sci. doi:10.1016/j.pss.2013.06.017

    Google Scholar 

  • Xiao Z, Komatsu G (2013) Impact craters with ejecta flows and central pits on Mercury. Planet and Space Sci 82-83: 62–78

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie D. Stopar .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Stopar, J.D. (2014). Impact Melt Flow. In: Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9213-9_503-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9213-9_503-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-9213-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics