Skip to main content

Lobate Scarp

  • Living reference work entry
  • First Online:
Encyclopedia of Planetary Landforms

Definition

Linear or arcuate landform in plan view, topographically convex, and asymmetric in cross section, with a relatively steep-sloping scarp face and a gently sloping back limb. Expression of a near-surface or surface-breaking thrust fault.

Synonyms

Arcuate scarp; Thrust-fault scarp (interpretation)

Description

Asymmetric cross-sectional topographic profiles and maximum slopes on scarp faces of ∼5–29° characterize lobate scarps on Mars, the Moon, and Mercury (Watters et al. 1998; Banks et al. 2012). On each planetary body, lobate scarps often deform preexisting crater floors and in several cases they appear segmented or occur in en echelon arrays (e.g., Strom et al. 1975; Dzurisin 1978; Watters and Nimmo 2010; Watters and Johnson 2010; Golombek and Phillips 2010).

On Mercury, some prominent lobate scarps may appear bow-shaped in plan view (e.g., Beagle (Fig. 1), Enterprise, Paramour Rupēs) similar to frontal thrusts bounded by oblique or lateral ramps on the Earth (Rothery and...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Anderson RC, Dohm JM, Golombek MP, Haldemann AF, Franklin BJ, Tanaka KL, Lias J, Peer B (2001) Primary centers and secondary concentrations of tectonic activity through time in the western hemisphere of Mars. J Geophys Res 106:20563–20585

    Article  Google Scholar 

  • Anguita F, Farelo AF, López V, Mas C, Muñoz MJ, Márquez A, Ruiz J (2001) Tharsis dome, Mars: new evidence for Noachian–Hesperian thick- skin and Amazonian thin-skin tectonics. J Geophys Res 106:7577–7589

    Article  Google Scholar 

  • Anguita F, Fernández C, Cordero G, Carrasquilla S, Anguita J, Nuñez A, Rodriguez S, Garcia J (2006) Evidence for a Noachian – Hesperian orogeny on Mars. Icarus 18:331–357

    Article  Google Scholar 

  • Banks ME, Watters TR, Robinson MS, Tornabene LL, Tran T, Ojha L, Williams NR (2012) Morphometric analysis of small-scale lobate scarps on the Moon using data from the Lunar Reconnaissance Orbiter. J Geophys Res 117:E00H11. doi:10.1029/2011JE003907

    Google Scholar 

  • Binder AB, Gunga H-C (1985) Young thrust-fault scarps in the highlands: evidence for an initially totally molten Moon. Icarus 63:421–444

    Article  Google Scholar 

  • Bull AJ (1932) The pattern of a contracting earth. Geol Mag 69(02):73–75

    Article  Google Scholar 

  • Byrne PK, Celâl Şengör AM, Klimczak C, Solomon SC, Watters TR, Hauck SA II (2014) Mercury’s global contraction much greater than earlier estimates. Nat Geosci 7:301–307. doi:10.1038/ngeo2097

    Article  Google Scholar 

  • Chicarro A, Schultz PH, Masson P (1985) Global and regional ridge patterns on Mars. Icarus 63:153–174

    Article  Google Scholar 

  • Clark JD, Hurtado Jr JM (2012) Characterization of thrust faults on the moon using thermoelastic stress calculations and 3D visualizations. 43rd Lunar Planet Sci Conf, abstract #2895, Houston

    Google Scholar 

  • Dana JD (1847) Geological results of the earth’s contraction in consequence of cooling. Am J Sci 5 Arts Second Ser (3):176–188

    Google Scholar 

  • Di Achille G, Popa C, Massironi M, Mazzotta Epifani E, Zusi M, Cremonese G, Palumbo P (2012) Mercury’s radius change estimates revisited using MESSENGER data. Icarus 221:456–460

    Article  Google Scholar 

  • Dombard AJ, Hauck SA (2008) Despinning plus global contraction and the orientation of lobate scarps on Mercury: predictions for MESSENGER. Icarus 198(1):274–276

    Article  Google Scholar 

  • Dzurisin D (1978) The tectonic and volcanic history of Mercury as inferred from studies of scarps, ridges, troughs and other lineaments. J Geophys Res 83(B10):4883–4906

    Article  Google Scholar 

  • Fassett CI, Head JW, Baker DMH, Zuber MT, Smith DE, Neumann GA, Solomon SC, Klimczak C, Strom RG, Chapman CR, Prockter LM, Phillips RJ, Oberst J, Preusker F (2012) Large impact basins on Mercury: global distribution, characteristics, and modification history from MESSENGER orbital data. J Geophys Res 117:E00L08. doi:10.1029/2012JE004154

    Google Scholar 

  • Ferrari S, Massironi M, Marchi S, Byrne PK, Klimczak C, Martellato E & Cremonese G (2014) Age relations of Rembrandt basin and Enterprise Rupes, Mercury. In: Platz T, Massironi M, Byrne PK, Hiesinger H (eds): Volcanism and Tectonism Across the Inner Solar System. Geological Society, London, Special Publications, P 401

    Google Scholar 

  • Galluzzi, V, Di Achille G, Ferranti L, Popa C, Palumbo P (2014) Faulted craters as kinematic indicators in planetary tectonics: application to Mercury. In: Platz T, Massironi M, Byrne PK, Hiesinger H (eds): Volcanism and Tectonism Across the Inner Solar System. Geological Society, London, Special Publications, 401

    Google Scholar 

  • Giacomini L, Massironi M, Marchi S, Fassett CI, Di Achille G. Cremonese G (2014) Age-dating of an extensive thrust system on Mercury. In: Platz T, Massironi M, Byrne PK, Hiesinger H (eds) Volcanism and tectonism across the inner solar system. Geological Society London, Special Publication 401, London

    Google Scholar 

  • Golombek MP, Phillips RJ (2010) Mars tectonics. In: Watters TR, Schultz RA (eds) Planetary tectonics. Cambridge University Press, Cambridge, UK, pp 183–232

    Google Scholar 

  • Grott M, Breuer D, Laneuville M (2011) Thermo-chemical evolution and global contraction of Mercury. Earth Planetary Sci Lett 307:135–146

    Article  Google Scholar 

  • Harmon JK, Campbell DB, Bindschadler KL, Head JW, Shapiro II (1986) Radar altimetry of Mercury: a preliminary analysis. J Geophys Res 91:385–401

    Article  Google Scholar 

  • King SD (2008) Pattern of lobate scarps on Mercury’s surface reproduced by a model of mantle convection. Nat Geosci 1:229–232

    Article  Google Scholar 

  • Mangold N, Allemand P, Thomas PG, Vidal G (2000) Chronology of compressional deformation on Mars: evidence for a single and global origin. Planet Space Sci 48:1201–1211

    Article  Google Scholar 

  • Massironi M, Di Achille G, Rothery DA, Galluzzi V, Giacomini L, Ferrari S, Zusi M, Cremonese G, Palumbo P (2014) Lateral ramps and strike-slip kinematics on Mercury. In: Platz T, Massironi M, Byrne PK, Hiesinger H (eds) Volcanism and tectonism across the inner solar system. Geological Society London, Special Publication 401, London

    Google Scholar 

  • Melosh HJ, McKinnon B (1988) The tectonics of Mercury. In: Matthews MS, Chapman C, Vilas F (eds) Mercury. University of Arizona Press, Tucson, pp 401–428

    Google Scholar 

  • Montgomery DR, Som SM, Jackson MPA, Schreiber BC, Alan R, Adams JB, Gillespie AR (2009) Continental-scale salt tectonics on Mars and the origin of Valles Marineris and associated outflow channels. Geol Soc Am Bull 121:117–133

    Google Scholar 

  • Nahm AL, Schultz RA (2011) Magnitude of global contraction on Mars from analysis of surface faults: implications for martian thermal history. Icarus 211:389–400

    Article  Google Scholar 

  • Rothery DA, Massironi M (2010) Beagle Rupes – evidence for a basal decollement of regional extent in Mercury’s lithosphere. Icarus 209:256–261

    Article  Google Scholar 

  • Rothery DA, Massironi M (2013) A spectrum of tectonized basin edges on Mercury. 43rd Lunar Planet Sci Conf, abstract #1175, Houston

    Google Scholar 

  • Ruiz J, López V, Dohmc JM, Fernández C (2012) Structural control of scarps in the Rembrandt region of Mercury. Icarus 219:511–514

    Article  Google Scholar 

  • Schmitt HH, Cernan EA (1973) 5. A geological investigation of the Taurus-Littrow valley. In: Apollo 17 preliminary science report NASA SP-330, pp 5-1–5-21

    Google Scholar 

  • Schultz RA, Tanaka KL (1994) Lithospheric scale buckling and thrust structures on Mars: the Coprates rise and south Tharsis ridge belt. J Geophys Res 99:8371–8385

    Article  Google Scholar 

  • Strom RG, Trask NJ, Guest JE (1975) Tectonism and volcanism on Mercury. J Geophys Res 80:2478–2507

    Article  Google Scholar 

  • Thomas PG, Masson P, Fleitout L (1988) Tectonic history of Mercury. In: Vilas F, Chapman CR, Matthews MS (eds) Mercury. University of Arizona Press, Tucson, pp 401–428

    Google Scholar 

  • Tosi N, Grott M, Plesa A-C, Breuer D (2013) Thermochemical evolution of Mercury’s interior. J Geophys Res 118:2474–2487

    Article  Google Scholar 

  • van der Bogert CH, Hiesinger H, Banks ME, Watters TR, Robinson MS (2012) Derivation of absolute model ages for lunar lobate scarps. 43rd Lunar Planet Sci Conf, abstract #1847, Houston

    Google Scholar 

  • Watters TR (1993) Compressional tectonism on Mars. J Geophys Res 98:17049–17060

    Article  Google Scholar 

  • Watters TR (2003) Thrust faults along the dichotomy boundary in the eastern hemisphere of Mars. J Geophys Res 108:5054. doi:10.1029/2002JE001934

    Article  Google Scholar 

  • Watters TR (2010) Shrinking moon briefing. News conference, NASA. http://www.nasa.gov/mission_pages/LRO/news/shrinking-moon-briefing.html. 19 Aug 2010

  • Watters TR, Johnson CL (2010) Planetary tectonics. Cambridge University Press, New York

    Google Scholar 

  • Watters TR, Nimmo F (2010) The tectonics of Mercury. In: Watters TR, Schultz RA (eds) Planetary tectonics. Cambridge University Press, Cambridge, UK, pp 15–80

    Google Scholar 

  • Watters TR, Robinson MS, Cook AC (1998) Topography of lobate scarps on Mercury: new constraints on the planet’s contraction. Geology 26:991–994

    Article  Google Scholar 

  • Watters TR, Schultz RA, Robinson MS (2000) Displacement-length relations of thrust faults associated with lobate scarps on Mercury and Mars: comparison with terrestrial faults. Geophys Res Lett 27(22):3659–3662

    Article  Google Scholar 

  • Watters TR, Robinson MS, Cook AC (2001) Large-scale lobate scarps in the southern hemisphere of Mercury. Planet Space Sci 49:1523–1530

    Article  Google Scholar 

  • Watters TR, Robinson MS, Bina CR, Spudis PD (2004) Thrust faults and the global contraction of Mercury. Geophys Res Lett 31, L04071. doi:10.1029/2003GL019171

    Article  Google Scholar 

  • Watters TR, Solomon SC, Robinson MS, Head JW, André SL, Hauck SA II, Murchie SL (2009) The tectonics of Mercury: the view after MESSENGER’s first flyby. Earth Planet Sci Lett 285:283–296

    Article  Google Scholar 

  • Watters TR, Robinson MS, Beyer RA, Banks ME, Bell JF, Pritchard ME, Hiesinger H, van der Bogert CH, Thomas PC, Turtle EP, Williams NR (2010) Evidence of recent thrust faulting on the moon revealed by the Lunar Reconnaissance Orbiter Camera. Science 329:936. doi:10.1126/science.1189590

    Article  Google Scholar 

  • Watters TR, Robinson MS, Banks ME, Tran T, Denevi BW (2012) Recent extensional tectonics on the Moon revealed by the Lunar Reconnaissance Orbiter Camera. Nat Geosci. doi:10.1038/ngeo1387

    Google Scholar 

  • Watters TR, Robinson MS, Banks ME, Daud K, Williams NR, Selvans MM, Collins GC (2014) Global distribution of lobate scarps on the Moon: implications for the current stress state. 45th Lunar Planet Sci Conf, abstract #2163, Houston

    Google Scholar 

  • Williams NR, Bell III JF, Watters TR, Banks ME, Robinson MS (2012) Tectonic mapping of Mare Frigoris using lunar reconnaissance orbiter camera images. 43rd Lunar Planet Sci Conf, abstract #2708, Houston

    Google Scholar 

  • Zuber MT, Montési LGJ, Farmer GT, Hauck SA II, Ritzer JA, Phillips RJ, Solomon SC, Smith DE, Talpe MJ, Head JW III, Neumann GA, Watters TR, Johnson CL (2010) Accommodation of lithospheric shortening on Mercury from altimetric profiles of ridges and lobate scarps measured during MESSENGER flybys 1 and 2. Icarus 209:247–255

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Massironi .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Massironi, M., Byrne, P.K., van der Bogert, C.H. (2014). Lobate Scarp. In: Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9213-9_491-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9213-9_491-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-9213-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics