Skip to main content

Layered Ejecta

  • Living reference work entry
  • First Online:
Book cover Encyclopedia of Planetary Landforms

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abramov O, Kring DA (2005) Impact-induced hydrothermal activity on early Mars. J Geophys Res 110. doi:10.1029/2005JE002453

    Google Scholar 

  • Arvidson RE, Coradini M, Carusi A, Coradini A, Fulchignoni M, Federico C, Funiciello R, Salomone M (1976) Latitudinal variation of wind erosion of crater ejecta deposits on Mars. Icarus 27:503–516

    Article  Google Scholar 

  • Baloga SM, Fagents SA, Mouginis-Mark PJ (2005) The emplacement of Martian rampart crater deposits. J Geophys Res 110. doi:10.1029/2004JE002381

    Google Scholar 

  • Baratoux D, Delacourt C, Allemand P (2002) An instability mechanism in the formation of the Martian lobate craters and the implications for the rheology of ejecta. Geophys Res Lett 29. doi:10.1029/2001GL013779

    Google Scholar 

  • Barlow NG (1994) Sinuosity of Martian rampart ejecta deposits. J Geophys Res 99:10927–10935

    Article  Google Scholar 

  • Barlow NG (2005) A review of Martian impact crater ejecta structures and their implications for target properties. In: Kenkmann T, Hörz F, Deutsch A (eds) Large meteorite impacts III. Geological Society of America special paper 384. Geological Society of America, Boulder, pp 433–442

    Chapter  Google Scholar 

  • Barlow NG, Bradley TL (1990) Martian impact craters: Correlations of ejecta and interior morphologies with diameter, latitude, and terrain. Icarus, 87, 156–179.

    Google Scholar 

  • Barlow NG, Perez CB (2003) Martian impact crater ejecta morphologies as indicators of the distribution of subsurface volatiles. J Geophys Res 108. doi:10.1029/2002JE002036

    Google Scholar 

  • Barlow NG, Boyce JM, Costard FM, Craddock RA, Garvin JB, Sakimoto SEH, Kuzmin RO, Roddy DJ, Soderblom LA (2000) Standardizing the nomenclature of Martian impact crater ejecta morphologies. J Geophys Res 105:26,733–26,738

    Article  Google Scholar 

  • Barnouin-Jha OS, Baloga S, Glaze L (2005) Comparing landslides to fluidized crater ejecta on Mars. J Geophys Res 110. doi:10.1029/2003JE002214

    Google Scholar 

  • Beaty D, 26 colleagues of the MEPAG Special Regions–Science Analysis Group (2006) Findings of the Mars special regions science analysis group. Astrobiology 6:677–732

    Article  Google Scholar 

  • Blasius KR, Cutts JA (1980) Global patterns of primary crater ejecta morphology on Mars. Reports of the Planetayr Geology Program 1980, NASA Tech. Memo 82385, 147–149, Washington, DC

    Google Scholar 

  • Boyce JM, Mouginis-Mark PJ (2006) Martian craters viewed by the thermal emission imaging system instrument: double-layered ejecta craters. J Geophys Res 111. doi:10.1029/2005JE002638

    Google Scholar 

  • Boyce J, Barlow N, Mouginis-Mark P, Stewart S (2010) Rampart craters on Ganymede: their implications for fluidized ejecta emplacement. Meteorit Planet Sci 45:638–661

    Article  Google Scholar 

  • Carr MH, Crumpler LS, Cutts JA, Greeley R, Guest JE, Masursky H (1977) Martian impact craters and emplacement of ejecta by surface flow. J Geophys Res 82:4055–4065

    Article  Google Scholar 

  • Cockell CS, Barlow NG (2002) Impact excavation and the search for subsurface life on Mars. Icarus 155:340–349

    Article  Google Scholar 

  • Costard FM (1989) The spatial distribution of volatiles in the Martian hydrolithosphere. Earth, Moon, and Planets, 45, 265–290

    Google Scholar 

  • Horner VM, Greeley R (1982) Pedestal craters on Ganymede. Icarus 51:549–562

    Article  Google Scholar 

  • Johansen LA (1978) Martian splosh cratering and its relation to water. In: Murphy DR (ed) Proceedings of the second colloquium on planetary water and polar processes, Hanover, 16–18 Oct 1978. Dartmouth College, p 109

    Google Scholar 

  • Kenkmann T, Schönian F (2006) Ries and Chicxulub: impact craters on Earth provide insights for Martian ejecta blankets. Meteorit Planet Sci 41:1587–1603

    Article  Google Scholar 

  • Komatsu G, Ori GG, DiLorenzo S, Rossi AP, Neukum G (2007) Combinations of processes responsible for Martian impact crater “layered ejecta structures” emplacement. J Geophys Res 112. doi:10.1029/2006JE002787

    Google Scholar 

  • Maloof AC, Stewart ST, Weiss BP, Soule SA, Swanson-Hysell NL, Louzada KL, Garrick-Bethell I, Poussart PM (2009) Geology of Lonar crater. Geol Soc Am Bull 122:109–126

    Article  Google Scholar 

  • McCauley JF (1973) Mariner 9 evidence for wind erosion in the equatorial and mid-latitude regions of Mars. J Geophys Res 78:4123–4137

    Article  Google Scholar 

  • McCauley JF, Carr MH, Cutts JA, Hartmann WK, Masursky H, Milton DJ, Sharp RP, Wilhelms DE (1972) Preliminary Mariner 9 report on the geology of Mars. Icarus 17:289–327

    Article  Google Scholar 

  • Mouginis-Mark P (1978) Effects of subsurface volatiles on the formation of Martian impact craters: photogeological and theoretical considerations. In: Murphy DR (ed) Proceedings of the second colloquium on planetary water and polar processes, Hanover, 16–18 Oct 1978. Dartmouth College, p 73

    Google Scholar 

  • Mouginis-Mark P (1979) Martian fluidized crater morphology: variations with crater size, latitude, altitude, and target material. J Geophys Res 84:8011–8022

    Article  Google Scholar 

  • Mouginis-Mark PJ, Boyce JM (2012) Tooting crater; geology and geomorphology of the archetype large, fresh, impact crater on Mars. Chemie der Erde 72:1–23

    Article  Google Scholar 

  • Neal JE, Barlow NG (2004) Layered ejecta craters on Ganymede: comparisons with Martian analogs. Lunar Planet Sci Conf XXXV, abstract #1121, Houston

    Google Scholar 

  • Phillips RJ, Arvidson RE, Boyce JM, Campbell DB, Guest JE, Schaber GG, Soderblom LA (1991) Impact craters on Venus: initial analysis from Magellan. Science 252:288–297

    Article  Google Scholar 

  • Robbins SJ, Hynek BM (2012) A new global database of Mars impact craters ≥1 km: 1. Database creation, properties, and parameters. J Geophys Res 117:E05004. doi:10.1029/2011JE003966

    Google Scholar 

  • Schultz PH (1992a) Atmospheric effects on ejecta emplacement. J Geophys Res 97:11623–11662

    Article  Google Scholar 

  • Schultz PH (1992b) Atmospheric effects on ejecta emplacement and crater formation on Venus from Magellan. J Geophys Res 97:16183–16248

    Article  Google Scholar 

  • Schultz PH, Gault DE (1979) Atmospheric effects on Martian ejecta emplacement. J Geophys Res 84:7669–7687

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadine G. Barlow .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Barlow, N.G., Robbins, S. (2014). Layered Ejecta. In: Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9213-9_475-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9213-9_475-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-9213-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics