Skip to main content

Albedo Feature

  • Living reference work entry
  • First Online:
  • 376 Accesses

Definition

An albedo feature is a region on the surface of a nonluminous celestial body (e.g., planet, moon, or small body) with distinct brightness (radiance) values or color, i.e., exhibiting observable/measurable brightness- or color-contrast relative to its surroundings. Albedo features were traditionally identified by doing spectrally integrated observation of the reflected sunlight with a telescope in the visible spectrum range of light and having adequate spatial resolution to resolve distinct parts of the surface of the object. Detection of the brightness variations is today extended to photometric (radiometric) measurements with modern satellite/spacecraft spectrophotometers or spectroradiometers at separate monochromatic wavelengths or integrated observations in other wavelength regions as well (see spectral albedo, narrowband albedo, and broadband albedo). Albedo features result from those brightness variations, that are due to variations of the reflective properties (often...

This is a preview of subscription content, log in via an institution.

References

  • Barlow NG (2008) Mars: an introduction to its interior, surface and atmosphere. Cambridge University Press, New York

    Google Scholar 

  • Beer W, Mädler JH (1830) Physische Beobachtungen des Mars bei seiner Opposition im September 1830. Berlin. http://reader.digitale-sammlungen.de/de/fs1/object/goToPage/bsb10060422.html?pageNo=7

  • Beer W, Madler JH (1838) Survey of the surface of the moon. Edinb New Philos J 25:38–67. (English translation, condensed)

    Google Scholar 

  • Beish JD (1999) Discrete topographic and orographic clouds of Mars. Association of Lunar and Planetary Observers. http://www.alpo-astronomy.org/mars/discrete.htm

  • Beish JD (2011) Surface features of Mars. In: Observing the planet Mars. http://www.alpo-astronomy.org/jbeish/Observing_Mars_4.html

  • Budikova D (2013) Albedo. Retrieved from http://www.eoearth.org/view/article/149954

  • Buie MW, Tholen DJ, Horne K (1992) Albedo maps of Pluto and Charon: initial mutual events results. Icarus 97:211–227

    Article  Google Scholar 

  • Cassidy W, Hapke B (1975) Effects of darkening processes on surfaces of airless bodies. Icarus 25(3):371–383

    Article  Google Scholar 

  • Christensen PR (1988) Global albedo variations on Mars: implications for active aeolian transport, deposition and erosion. J Geophys Res 93(B7):7611–7624

    Article  Google Scholar 

  • Christensen PR, Bandfield JL, Hamilton VE, Ruff SW, Kieffer HH et al (2001) Mars global surveyor thermal emission spectrometer experiment: investigation description and surface science results. J Geophys Res 106(E10):23823–23871

    Article  Google Scholar 

  • Clark BE, Hapke B, Pieters C, Britt D (2001) Asteroid space weathering and regolith evolution. In: Bottke WF, Cellino A, Paolicchi P, Binzel RP (eds) Asteroids III. University of Arizona Press, Tucson, pp 585–599

    Google Scholar 

  • Clerke AM (1885[2010]) A popular history of astronomy during the nineteenth century. Cambridge University Press

    Google Scholar 

  • Coakley JA Jr (2002) Reflectance and albedo, surface. In: Holton JR, Curry JA, Pyle JA (eds): Encyclopedia of atmospheric sciences. Academic Press,1914–1923. doi:10.1016/B0-12-227090-8/00069-5

    Google Scholar 

  • Collins GC, McKinnon WB, Moore JM, Nimmo F, Pappalardo RT, Prockter LM, Schenk PM (2010) Tectonics of the outer planet satellites. In: Schultz RA, Watters TR (eds) Planetary tectonics. Cambridge University Press, New York, pp 264–350

    Google Scholar 

  • Cruikshank DP, Nelson RM (2007) A history of the exploration of Io. In: Lopes RMC, Spencer JR (eds) Io after Galileo: a new view of Jupiter’s volcanic moon. Springer Praxis, Berlin

    Google Scholar 

  • De Grenier M, Pinet PC (1995) Near-opposition Martian limb-darkening: quantification and implication for visible-near infrared bidirectional reflectance studies. Icarus 115:354–368

    Article  Google Scholar 

  • de Vaucouleurs G, Blunck J, Davies M, Dollfus A, Koval IK, Kuiper GP, Masursky G, Miyamoto S, Moroz VI, Sagan C, Smith B (1975) The new Martian nomenclature of the International Astronomical Union. Icarus 26:85–98

    Article  Google Scholar 

  • Doggett T, Greeley R, Figueredo P, Tanaka K (2009) Grologic stratigraphy and evolution of Eruopa’s surface. In: Pappalardo RT, McKinnon WB, Khurana K (eds) Europa. University of Arizona Press, Tucson

    Google Scholar 

  • Dollfus A, Chapman CR, Davies ME, Gingerich O, Goldstein R, Guest J, Morrison D, Smith BA (1978) IAU Nomenclature for albedo features on the planet Mercury. Icarus 34(1):210–214

    Article  Google Scholar 

  • Dumont M, Sirguey P, Arnaud Y, Six D (2011) Monitoring spatial and temporal variations of surface albedo on Saint Sorlin Glacier (French Alps) using terrestrial photography. Cryosphere 5:759–771

    Article  Google Scholar 

  • Elger TG (1895) The Moon – a full description and map of its principal physical features. George Philip & Son, London

    Google Scholar 

  • Erard S, Mustard J, Murchie S, Bibring JP, Cerroni P, Coradini A (1994) Martian Aerosols: near-infrared spectral properties and effects on the observation of the surface. Icarus 111:317–337

    Article  Google Scholar 

  • Esposito F, Giuranna M, Maturilli A, Palomba E, Colangeli L, Formisano V (2007) Albedo and photometric study of Mars with the Planetary Fourier Spectrometer on-board the Mars Express mission. Icarus 186:527–546

    Article  Google Scholar 

  • Fenton LK, Geissler PE, Haberle RM (2007) Global warming and climate forcing by recent albedo changes on Mars. Nature 446:646–649. doi:10.1038/nature05718

    Article  Google Scholar 

  • Fessenkov VG (1962) Photometry of the moon. In: Kopal Z (ed) Physics and astronomy of the moon. Academic, New York

    Google Scholar 

  • Fimmel RO, Swindell W, Burgess E (1977) Pioneer odyssey. NASA Scientific and Technical Information Office, Washington, DC

    Google Scholar 

  • Gangale T, Dudley-Flores M (2013) Proposed additions to the cartographic database of Mars. In: Proceedings of the 26th international cartographic conference, Dresden, P2–75

    Google Scholar 

  • Geissler PE (2004) Three decades of Martian surface changes. Lunar Planet Sci Conf XXXV, abstract #2017, Houston

    Google Scholar 

  • Geissler P (2005) Three decades of Martian surface changes. J Geophys Res 110:E02001. doi:10.1029/2004JE002345, 23

    Google Scholar 

  • Geissler PE, Mukherjee P (2010) Recent surface changes on Mars. American Geophysical Union, Fall meeting 2010 #P51B–1428

    Google Scholar 

  • Geissler PE, Tornabene L, Verba C, Bridges N et al (2008) HIRISE observations of Martian albedo boundaries. Lunar Planet Sci Conf XXXIX, abstract #2352, Houston

    Google Scholar 

  • Goguen JD (1981) A theoretical and experimental investigation of the photometric functions of particulate surfaces, PhD thesis, Cornell University, Ithaca

    Google Scholar 

  • Gold T (1955) The lunar surface. Mon Not R Astron Soc 115:585–604

    Article  Google Scholar 

  • Greenberg R (2008) Unmasking Europa. Copernicus Books, New York

    Google Scholar 

  • Guthnick P (1906) Resultate aus photometrischen Beobachtungen der sechs helleren Saturntrabanten. Astron Nachr 171(18):273–280, 4098

    Article  Google Scholar 

  • Hapke B (1981) Bidirectional reflectance spectroscopy: 1. Theory J Geophys Res 86(B4):3039–3054

    Article  Google Scholar 

  • Hapke B (2001) Space weathering from Mercury to the asteroid belt. J Geophys Res 106(E5):10039–10073

    Article  Google Scholar 

  • Hapke B (2012) Theory of reflectance and emittance spectroscopy, 2nd edn. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Hapke B, Cassidy W, Wells E (1975) Effects of vapor-phase deposition processes on the optical, chemical and magnetic properties of the lunar regolith. Moon 13:339–354

    Article  Google Scholar 

  • Harris DL (1961) Photometry and colorimetry of planets and satellites. In: Kuiper GP, Middlehurst BM (eds) Planets and satellites. University of Chicago Press, Chicago, pp 272–342

    Google Scholar 

  • Helfenstein P, Wilson L (1985) Photometric constraints on the emplacement and evolution of terrains on ganymede. Lunar Planet Sci XVI:339–340, Houston

    Google Scholar 

  • Herschel JFW (1893) Outlines of astronomy. Longmans, Green and Co, London

    Google Scholar 

  • IAU Gazetteer (2014) Gazetteer of planetary nomenclature. International Astronomical Union, Working group for planetary system nomenclature. http://planetarynames.wr.usgs.gov/

  • JPL (2007) Cassini Titan 052TI(T37) Mission description. Jet Propulsion Laboratory. 12 p

    Google Scholar 

  • Jin Z, Charlock TP, Smith Jr WL, Rutledge K (2004) A parameterization of ocean surface albedo. GEOPHYSICAL RESEARCH LETTERS, 31:L22301, doi:10.1029/2004GL021180.

    Article  Google Scholar 

  • Kieffer HH (1992) Mars. University of Arizona Press, Tucson

    Google Scholar 

  • Kramer GY, Besse S, Dhingra D, Nettles J, Klima R et al (2011) M3 spectral analysis of lunar swirls and the link between optical maturation and surface hydroxyl formation at magnetic anomalies. J Geophys Res 116:E00G18. doi:10.1029/2010JE003729

    Google Scholar 

  • Krivov VA, Hamilton DP (1997) Martian dust belts: waiting for discovery. Icarus 128:335–353

    Article  Google Scholar 

  • Lambert JH (1760) Photometria sive de mensura et gradibus luminis, colorum et umbrae. Viduae Eberhardi Klett, Augsburg

    Google Scholar 

  • Langhans MH, Jaumann R, Stephan K et al (2012) Titan’s fluvial valleys: morphology, distribution, and spectral properties. Planet Space Sci 60:34–51

    Article  Google Scholar 

  • Lee T (1971) Spectral albedos of the Galilean Satellites. Communications of the Lunar and Planetary Laboratory. 9(3) No. 168. The University of Arizona, pp 179–181

    Google Scholar 

  • Lee SW (1985) Seasonal and secular variation of the SOLIS Lacus albedo feature: relation to the Martian dust-transport cycle. Lunar Planet Sci XVI:483–484, Houston

    Google Scholar 

  • Lee SW, Wolff MJ, Janes PB, Clancy RT, Bell JF, Martin LJ (1996) HST observations of Mars: time-variable Albedo in the Cerberus region American Astronomical Society, DPS meeting #28, #02.17, Bulletin of the American Astronomical Society, vol 28. p 106

    Google Scholar 

  • Leonard GJ, Tanaka KL (2001) Geologic map of the Hellas Region of Mars. USGS, Reston

    Google Scholar 

  • Li J-Y, McFadden LA, Thomas PC, Mutchler MJ, Parker JW, Young EF, Russell CT, Skyes MV, Schmidt BE (2010) Photometric mapping of Asteroid (4) Vesta’s southern hemisphere with Hubble Space Telescope. Icarus 208:238–251

    Article  Google Scholar 

  • Liang S, Strahler AH, Walthall C (1999) Retrieval of land surface albedo from satellite observation: a simulation study. J Appl Meteorol 28:712–725

    Article  Google Scholar 

  • Lucchitta BK, Soderblom LA, Ferguson HM (1981) Structures on Europa. Lunar Planet Sci 12B:1555–1567, Houston

    Google Scholar 

  • McCord TB, Johnson TV, Elias JH (1971) Saturn and its satellites: narrow band spectrophotometry (0.3–1.1 μm). Astrophys J 165:413–424

    Article  Google Scholar 

  • McEwen AS (1991) Photometric functions for photoclinometry and other applications. Icarus 92:298–311

    Article  Google Scholar 

  • McEwen AS, Robinson MS (1995) Global albedo variations on the Moon: clementine 750-nm observations. Lunar Planet Sci XXVI:931–932, Houston

    Google Scholar 

  • Minnaert M (1941) The reciprocity principle in lunar photometry. Astrophys J 93:403–410

    Article  Google Scholar 

  • Neison E (1876) The Moon and the condition and configuration of its surface. Longmans, Green and Co, London

    Google Scholar 

  • Nicodemus FE, Richmond JC, Hsia JJ, Ginsberg IW, Limperis T (1977) Geometrical considerations and nomenclature for reflectance, vol 160. National Bureau of Standards Monograph, Washington, DC

    Google Scholar 

  • Pinty B, LattanzioA MJV, Verstraete MM, Gobron N, Taberner M, Widlowski J-L, Dickinson RE, Govaerts Y (2005) Coupling diffuse sky radiation and surface Albedo. J Atmos Sci 62:2580–2591

    Article  Google Scholar 

  • Plescia J (2009) Appearance of lunar features under different illuminations. Lunar Networks. http://lunarnetworks.blogspot.hu/2009/10/appearance-of-lunar-features-under.html

  • Porco CC et al (2005) Imaging of Titan from the Cassini spacecraft. Nature 434:159–168. doi:10.1038/nature03436

    Article  Google Scholar 

  • Porco CC, Helfenstein P, Thomas PC, Ingersoll AP, Wisdom J, West R, Neukum G et al (2006) Cassini observes the active south pole of Enceladus. Science 311:1393–1401. doi:10.1126/science.1123013

    Article  Google Scholar 

  • Poulsen CJ (2003) Absence of a runaway ice-albedo feedback in the Neoproterozoic. Geology 31(6):473–476

    Article  Google Scholar 

  • Prockter L, Schenk PM (2005) Origin and evolution of Castalia Macula, an anomalous young depression on Europa. Icarus 177:305–326

    Article  Google Scholar 

  • Prockter LM, Head JW, Pappalardo RT, Senske DA, Neukum G et al (1998) Dark Terrain on Ganymede: geological mapping and interpretation of Galileo Regio at high resolution. Icarus 135:317–344

    Article  Google Scholar 

  • Prockter LM, Ernst CM, Denevi BW, Chapman CR et al (2010) Evidence for young volcanism on Mercury from the third MESSENGER Flyby. Science 329:668–671. doi:10.1126/science.1188186

    Article  Google Scholar 

  • Rogers JH (1995) The giant planet Jupiter. Cambridge University Press, New York

    Google Scholar 

  • Rogers AD, Bandfield JL, Christensen PR (2007) Global spectral classification of Martian low-albedo regions with Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) data. J Geophys Res 112:E02004. doi:10.1029/2006JE002726

    Google Scholar 

  • Ronca LB (1970) An introduction to the geology of Mars. Proc Geol Assoc 81(1):111–128

    Article  Google Scholar 

  • Ruff SW, Christensen PR (2002) Bright and dark regions on Mars: particle size and mineralogical characteristics based on Thermal Emission Spectrometer data. J Geophys Res 107(E12):5127. doi:10.1029/2001JE001580

    Article  Google Scholar 

  • Sagan C, Pollack JB, Veverka J (1972) Variable features on Mars: preliminary Mariner 9 television results. Icarus 17:346–372

    Article  Google Scholar 

  • Schröter JH (1791) Selenotopographische Fragmente. CG Fleckeinsen, Lilenthal

    Google Scholar 

  • See TJJ (1910) The origin of the so-called craters on the Moon by the impact of satellites, and the relation of these satellite indentations to the obliquities of the planets. Publ Astron Soc Pac 22(130):13–20

    Article  Google Scholar 

  • Shkuratov Y, Starukhina L, Hoffmann H, Arnold G (1999) A model of spectral albedo of particulate surfaces: implications for optical properties of the Moon. Icarus 137:235–246

    Article  Google Scholar 

  • Stebbins J (1927) The light variations of the satellites of Jupiter and their applications to measures of the solar constant. Lick Obs Bull 13:1–11

    Google Scholar 

  • Strugnell NC, Lucht W (2001) An algorithm to infer continental-scale Albedo from AVHRR data, land cover class, and field observations of typical BRDFs. J Clim 14:1360–1376

    Article  Google Scholar 

  • Thomas N (2005) Lecture 7: surface photometry. The planet, Mars. Physikalisches Institut, University, Bern. http://space.unibe.ch/staff/thomas/07_Photometry_Rev.pdf

  • Thomas N, Stelter R, Ivanov A, Bridges NT, Herkenhoff KE, McEwen AS (2011) Spectral heterogeneity on Phobos and Deimos: HiRISE observations and comparisons to Mars Pathfinder results. Planetary and Space Science 59(13):1281–1292

    Article  Google Scholar 

  • Ulivi P, Harland DM (2007) Robotic exploration of the Solar System. Part 1. Springer-Praxis, Chichester UK

    Google Scholar 

  • Veverka J (1973) Titan: polarimetric evidence for an optically thick atmosphere. Icarus 18:657–660

    Article  Google Scholar 

  • Veverka J, Goguen J, Yang S, Elliot JL (1978a) Near-opposition limb darkening of solids of planetary interest. Icarus 33:368–379

    Article  Google Scholar 

  • Veverka J, Goguen J, Yang S, Elliot JL (1978b) Scattering of light from particulate surfaces I. A laboratory assessment of multiple-scattering effects. Icarus 34:406–414

    Article  Google Scholar 

  • Veverka J, Thomas P, Johnson V, Matson DL, Housen K (1986) The physical characteristics of satellite surfaces. In: Burns J, Matthews MS (eds) Satellites. University of Arizona Press, Tucson, pp 342–402

    Google Scholar 

  • Vixie G, Barnes JW, Bow J, Le Mouélic S, Rodriguez S, Brown RH, Cerroni R, Tosi F, Buratti B, Sotin C, Filacchione G, Capaccioni F, Coradini A (2012) Mapping Titan’s surface features within the visible spectrum via Cassini VIMS. Planet Space Sci 60(1):52–61

    Article  Google Scholar 

  • Williams DA, Keszthelyi LP, Crown DA, Yff JA, Jaeger WL, Schenk PM, Geissler PE, Becker TL (2011) Volcanism on Io: new insights from global geologic mapping. Icarus 214:91–112

    Article  Google Scholar 

  • Wood CA (2003) The modern moon. A personal view. Sky Publishing, Cambridge, MA

    Google Scholar 

  • Wood CA (2007) Lunar brightness. In: Moon.wiki. http://the-moon.wikispaces.com/Brightness+of+Selected+Features

  • Zakharov A (2012) Dust at the Martian Moons and in the circummartian space. The meteoroid flux in the Martian satellite system. MIIGAiK MExLab workshop. Moscow, 5–6 July 012

    Google Scholar 

  • Zinzi A, Palomba E, Rinaldi G, D’Amore M (2010) Effect of atmospheric dust loading on Martian albedo features. Icarus 208:590–597

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Kardeván .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Kardeván, P., Hargitai, H., Zinzi, A., Esposito, F. (2014). Albedo Feature. In: Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9213-9_461-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9213-9_461-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-9213-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics