Skip to main content

Aeolian Deposits

  • Living reference work entry
  • First Online:
  • 1129 Accesses

Definition

Wind-blown deposits on planetary surfaces, may be unconsolidated (loose) or indurated (cemented, lithified).

Subtypes

  1. (1)

    Aeolian sand deposits

  2. (2)

    Aeolian dust deposits

Description

Wind-transported and deposited particulate material on planetary surfaces that may form structures with varied morphology, including sand sheets, ripples and dunes, (aeolian sand deposit). Aeolian deposits in ice-cemented structures may form Polar Layered Deposits on Mars.

Grain Size

In the geological sciences, dust is defined as particles with diameters smaller than 62.5 μm. Sand is defined as particles (regardless of composition) in the range of 62.5–2,000 μm.

In the atmospheric sciences, dust is usually defined as the material that can be readily suspended by wind, whereas sand is rarely suspended and is predominantly transported by saltation (Kok et al. 2012).

Mean grain size of sand on Earth is 160–330 μm. Grain size on Mars is estimated between 60 and 600 μm depending on author,...

This is a preview of subscription content, log in via an institution.

References

  • Almeida MP, Parteli EJR, Andrade JS Jr, Herrmann HJ (2008) Giant saltation on Mars. Proc Natl Acad Sci U S A 105(17):6222–6226

    Article  Google Scholar 

  • Anderson RS (1987) A theoretical model for aeolian impact ripples. Sedimentology 34:943–956

    Article  Google Scholar 

  • Anderson RS, Hallet B (1986) Sediment transport by wind: toward a general model. Geol Soc Am Bull 97:523–535

    Article  Google Scholar 

  • Andreotti B (2004) A two species model of aeolian sand transport. J Fluid Mech 510:47–70

    Article  Google Scholar 

  • Bagnold RA (1941) The physics of brown sand and desert dunes. Methuen, London

    Google Scholar 

  • Basilevsky AT, Head JW (2012) Venus: Analysis of the degree of impact crater deposit degradation and assessment of its use for dating geological units and features. J Geophys Res 107(E8). doi:10.1029/2001JE001584

    Google Scholar 

  • Bourke MC, Edgett KS, Cantor BA (2008) Recent aeolian dune change on mars. Geomorphology 94:247–255

    Article  Google Scholar 

  • Bourke MC, Lancaster N, Fenton LK, Parteli EJR, Zimbelman JR, Radebaugh J (2010) Extraterrestrial dunes: an introduction to the special issue on planetary dune systems. Geomorphology 121(1–2):1–14

    Article  Google Scholar 

  • Carpenter AH (1948) Principles of historical geology applied to neighboring planets and life on mars. Pop Astron 56:233–246

    Google Scholar 

  • Chojnacki M, Moersch JE, Burr DM (2010) Climbing and falling dunes in valles marineris, mars. Geophys Res Lett 37:l08201. doi:10.1029/2009GL042263

    Article  Google Scholar 

  • Claudin P, Andreotti B (2006) A scaling law for aeolian dunes on Mars, Venus, Earth, and for subaqueous ripples. Earth Planet Sci Lett 252(1–2):30–44

    Article  Google Scholar 

  • Craddock RA (2011) Aeolian processes on the terrestrial planets: recent observations and future focus. Prog Phys Geogr 36(1) p110:1–15. doi:10.1177/0309133311425399

    Google Scholar 

  • Elbelrhiti H, Claudin P, Andreotti B (2005) Field evidence for surface-wave-induced instability of sand dunes. Nature 437:720–723

    Article  Google Scholar 

  • Greeley R, Arvidson RE (1990) Aeolian processes on Venus. Earth Moon Planets 50(51):127–157

    Article  Google Scholar 

  • Greeley R, Iversen JD (1985) Wind as a geological process on Earth, Mars, Venus and Titan. Cambridge University Press, New York, Cambridge New York New Rochelle Melbourne Sydney. http://assets.cambridge.org/97805213/59627/frontmatter/9780521359627_frontmatter.pdf

    Book  Google Scholar 

  • Greeley R, Lancaster N, Lee S, Thomas P (1992) Martian aeolian processes, sediments and features. In: Kieffer H, Jakosky BM, Snyder CW, Matthews MS (eds) Mars. University of Arizona Press, Tucson, pp 730–767

    Google Scholar 

  • Greeley R, Bender K, Weitz CM (1995) Wind-related features and processes on Venus: summary of Magellan results. Icarus 115(2):399–420

    Article  Google Scholar 

  • Greeley R, Bridges NT, Kuzmin RO, Laity JE (2002) Terrestrial analogs to wind-related features at the Viking and Pathfinder landing sites on Mars. J Geophys Res 107(E1):10129–10150

    Google Scholar 

  • Hayward RK, Mullins KF, Fenton LK, Hare TM, Titus TN, Bourke M, Colprete A, Christensen PR (2007) Mars Global Digital Dune Database and initial science results. J Geophys Res 112, E11007. doi:10.1029/2007JE002943.

    Google Scholar 

  • Iverson JD, White BR (1982) Saltation thresholds on Earth, Mars and Venus. Sedimentology 29:111–119

    Article  Google Scholar 

  • Kok JF, Renno NO (2006) Enhancement of the emission of mineral dust aerosols by electric forces. Geophys Res Lett 33:L19S10. doi:10.1029/2006GL026284

    Article  Google Scholar 

  • Kok JF, Renno NO (2008) Electrostatics in wind-blown sand. Phys Rev Lett 100:014501

    Article  Google Scholar 

  • Kok JF, Parteli EJR, Michaels TI, Bou Karam D (2012) The physics of wind-blown sand and dust. Rep Prog Phys 75:106901

    Article  Google Scholar 

  • Lancaster N (1995) Dune morphology and morphometry. In: Geomorphology of desert dunes. Routledge, London and New York. http://www.amazon.com/Geomorphology-Desert-Routledge-Physical-Environment/dp/041506094X

  • Lorenz RD, Lunine JI, Grier JJA, Fisher MA (1995) Prediction of aeolian features on planets: application to Titan paleoclimatology. J Geophys Res 100(E12):26377–26386

    Article  Google Scholar 

  • Lorenz RD, Wall S, Radebaugh J, Boubin G, Reffet E, Janssen M, Stofan E, Lopes R, Kirk R, Elachi C, Lunine J, Mitchell K, Paganelli F, Soderblom LA, Wood C, Wye L, Zebker H, Anderson Y, Ostro S, Allison M, Boehmer R, Callhan P, Encrnaz P, Ori GG, Francescetti G, Gim Y, Hamilton G, Hensley S, Johnson W, Kelleher K, Muhleman D, Picardi G, Posa F, Roth L, Seu R, Shaffer S, Stiles B, Vetrella S, Flamini E, West R (2006) The sand seas of Titan: Cassini RADAR observations of longitudinal dunes. Science 312:724–727

    Article  Google Scholar 

  • Lowell P (1910) Mars as the abode of life. Macmillan, New York

    Google Scholar 

  • Mizser A, Kereszturi Á (2007) Climatic planetomorphology: hypothetical synthesis from available data. 38th Lunar Planet Sci Conf, abstract #1523, Houston

    Google Scholar 

  • Parteli EJR (2007) Sand dunes on mars and on earth. Dissertation, Institut für Computerphysik der Universität Stuttgart

    Google Scholar 

  • Parteli EJR, Durán O, Herrmann HJ (2007) The minimal size of a barchen dune. Phys Rev E 75:01130, rXiv:0705.1778

    Article  Google Scholar 

  • Pécsi M (1968) Loess. In: Fairbridge RW (ed) The encyclopedia of geomorphology. Reinhold, New York, pp 674–678

    Chapter  Google Scholar 

  • Prigozhin L (1999) Nonlinear dynamics of aeolian sand ripples. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 60(1):729–733

    Google Scholar 

  • Sagan C, Veverka J, Fox P, Dubisch R et al (1972) Variable features on Mars, 2. Mariner 9 global results. J Geophys Res 78:4163–4196

    Article  Google Scholar 

  • Sharp RP (1963) Wind ripples. J Geol 71:617–636

    Article  Google Scholar 

  • Thomas DSG (1989) Aeolian sand deposits. In: Thomas DSG (ed) Arid zone geomorphology. Belhaven Press, London, pp 232–261

    Google Scholar 

  • Thomas M, Clarke JDA, Pain CF (2005) Weathering, erosion and landscape processes on Mars identified from recent rover imagery, and possible earth analogues. Aust J Earth Sci 52(3):365–378. doi:10.1080/08120090500134597

    Article  Google Scholar 

  • Tokano T, Neubauer FM (2002) Tidal winds on Titan caused by Saturn. Icarus 158(2):499–515

    Google Scholar 

  • Tsoar H (2001) Types of aeolian sand dunes and their formation. In: Balmforth NJ, Provenzale A (eds) Geomorphological fluid mechanics. Lecture notes in physics, vol 582. Springer, Berlin, p 403

    Google Scholar 

  • Tsoar H, Pye K (1987) Dust transport and the question of desert loess formation. Sedimentology 34:139–153

    Article  Google Scholar 

  • Ungar JE, Haff PK (1987) Steady-state saltation in air. Sedimentology 34:289–299

    Article  Google Scholar 

  • Watson A (1989) Windflow characteristics and aeolian entrainment. In: Thomas DSG (ed) Arid zone geomorphology. Belhaven Press, London

    Google Scholar 

  • Wilson IG (1972) Aeolian bedforms – their development and origins. Sedimentology 19:173–210

    Google Scholar 

  • Zimbelman JR (2000) Non-active dunes in the Acheron Fossae region of mars between the Viking and mars global surveyor eras. Geophys Res Lett 27(7):1069–1072

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Hargitai .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Hargitai, H., Kereszturi, Á. (2014). Aeolian Deposits. In: Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9213-9_457-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9213-9_457-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-9213-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics