Skip to main content

Thermal Erosion Channel

  • Living reference work entry
  • First Online:
Encyclopedia of Planetary Landforms

Definition

A surface channel formed by predominantly thermal effects, i.e., thermal ablation.

Description

Meandering channels in places with horizontal floor. The cross sections of thermal erosion channels are often characterized by undercutting of the channel wall (Jarvis 1995).

Formation

Thermal erosion channels are formed by laminar fluid whose temperature exceeds the melting temperature of the substrate. In practice thermal erosion channels are formed by hot lava. “As the hot fluid comes into contact with the substrate, the substrate is melted and assimilated into the flowing fluid, resulting in incision into the substrate” (Hurwitz et al. 2012). Thermal erosion is enhanced by higher temperature of the flowing lava (Kerr 2001, 2009) and lower melting point, higher volatile content, and lower thermal conductivity of the eroded substrate. Prolonged period of flow and higher level of turbulence also enhance the thermal erosion of the substrate (Hulme 1982; Huppert and Sparks 1985)....

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Costard F, Aguirre-Puente J, Greeley R, Makhloufi N (1999) Martian fluvial-thermal erosion: laboratory simulation. J Geophys Res 104(E6):14091–14098

    Article  Google Scholar 

  • Costard F, Gautier E, Brunstein D, Hammadi J, Fedorov A, Yang D, Dupeyrat L (2007) Impact of the global warming on the fluvial thermal erosion over the Lena River in Central Siberia. Geophys Res Lett 34:L14501. doi:10.1029/2007GL030212

    Article  Google Scholar 

  • Dawson JB, Pinkerton H, Norton GE, Pyle DM (1990) Physicochemical properties of alkali carbonatite lavas: data from the 1988 eruption of Oldoinyo Lengai, Tanzania. Geology 18:260–263

    Article  Google Scholar 

  • Fortier D, Allard M, Shur Y (2007) Observation of rapid drainage system development by thermal erosion of ice wedges on Bylot Island, Canadian Arctic Archipelago. Permafrost Periglacial Process 18(3):229–243

    Article  Google Scholar 

  • Greeley R, Fagents SA, Harris RS, Kadel SD, Williams DA, Guest JE (1998) Erosion by flowing lava: field evidence. J Geophys Res 103:27,325–27,345. doi:10.1029/97JB03543

    Article  Google Scholar 

  • Gregg TKP, Greeley R (1993) Formation of Venusian canali – considerations of lava types and their thermal behaviors. J Geophys Res 98(E6):10,873–10,882

    Article  Google Scholar 

  • Groves DI, Korkiakoski EA, McNaughton NJ, Lesher CM, Cowden A (1986) Thermal erosion by komatiites at Kambalda, Western Australia and the genesis of nickel ores. Nature 319(6049):136–139

    Article  Google Scholar 

  • Hopper JP, Leverington DW (2013) Formation of Hrad Vallis (Mars) by low viscosity lava flows. Geomorphology 207:96–113. doi:10.1016/j.geomorph.2013.10.029

    Article  Google Scholar 

  • Hulme G (1982) A review of lava flow processes related to the formation of lunar sinuous rilles. Geophys Surv 5:245–279

    Article  Google Scholar 

  • Huppert HE, Sparks RSJ (1985) Komatiites I: eruption and flow. J Petrol 26:694–725

    Article  Google Scholar 

  • Hurwitz DM, Fassett CI, Head JW, Wilson L (2010) Formation of an eroded lava channel within an Elysium Planitia impact crater: distinguishing between a mechanical and thermal origin. Icarus 210:626–634

    Article  Google Scholar 

  • Hurwitz DM, Head JW, Wilson L, Hiesinger H (2012) Origin of lunar sinuous rilles: modeling effects of gravity, surface slope, and lava composition on erosion rates during the formation of Rima Prinz. J Geophys Res 117:E00H14, 15 pp. doi:10.1029/2011JE004000

    Google Scholar 

  • Jarvis RA (1995) On the cross-sectional geometry of thermal erosion channels formed by turbulent lava flows. J Geophys Res 100(B6):10127–10140

    Article  Google Scholar 

  • Kauahikaua J et al (1998) Observations on basaltic lava streams in tubes from Kilauea Volcano, island of Hawaii. J Geophys Res 103:27303–27323

    Article  Google Scholar 

  • Kerr RC (2001) Thermal erosion by laminar lava flows. J Geophys Res 106(B11):26453–26466

    Article  Google Scholar 

  • Kerr RC (2009) Thermal erosion of felsic ground by the laminar flow of a basaltic lava, with application to the Cave Basalt, Mount St. Helens, Washington. J Geophys Res 114:B09204

    Google Scholar 

  • Leverington DW (2011) A volcanic origin for the outflow channels of Mars: key evidence and major implications. Geomorphology 132:51–75

    Article  Google Scholar 

  • Oshigami S, Namiki N, Komatsu G (2009) Depth profiles of Venusian sinuous rilles and valley networks. Icarus 199(2):250–263

    Article  Google Scholar 

  • Schenk PM, Williams DA (2004) A potential thermal erosion lava channel on Io. Geophys Res Lett 31(23):CiteID L23702

    Google Scholar 

  • Williams DA, Kerr RC, Lesher CM (1998) Emplacement and erosion by Archean komatiite lava flows at Kambalda: revisited. J Geophys Res 103:27533–27550

    Article  Google Scholar 

  • Williams DA, Wilson AH, Greeley R (2000) A komatiite analog to potential ultramafic materials on Io. J Geophys Res 105(E1):1671–1684

    Article  Google Scholar 

  • Williams DA, Kerr RC, Lesher CM, Barnes SJ (2001) Analytical/Numerical modeling of komatiite lava emplacement and thermal erosion at Perseverance, Western Australia. J Volcanol Geotherm Res 110:27–55

    Article  Google Scholar 

  • Wilson L, Mouginis-Mark PJ (2001) Estimation of volcanic eruption conditions for a large flank event on Elysium Mons, Mars. J Geophys Res 106(E9):20621–20628

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ákos Kereszturi .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Kereszturi, Á., Hargitai, H. (2014). Thermal Erosion Channel. In: Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9213-9_369-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9213-9_369-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-9213-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics