Skip to main content

Softened Crater

  • Living reference work entry
  • First Online:
  • 58 Accesses

Definition

An impact crater displaying muted topography in a volatile-rich target material.

Synonyms

Terrain softened crater (antonym: unsoftened crater)

Description

Structure of impact craters depends on the target material (e.g., Strom et al. 1992; Barlow and Perez 2003; Stewart and Valiant 2006) and can exhibit distinct structures if the target is rich in volatiles (e.g., Senft and Stewart 2008). An impact into a target substrate that is volatile rich or contains buried volatiles can result in a crater with a “softened” form compared to an impact into a substrate with no volatiles. Using imagery, Jankowski and Squyres (1992) assessed craters in the mid-latitudes of Mars for crater depth, convexity or concavity of crater wall, rounding of the crater rim, and rim height. They found that softened simple and complex craters had rounded rims and more convex crater-wall slopes; and otherwise sharp features were rounded (Figs. 1 and 2). Softened craters are shallower than unsoftened...

This is a preview of subscription content, log in via an institution.

References

  • Bandfield J (2007) High-resolution subsurface water-ice distributions on Mars. Nature 447:64–68

    Article  Google Scholar 

  • Banks ME, Byrne S, Galla K, McEwen AS, Bray VJ, Dundas CM, Fishbaugh KE, Herkenhoff KE, Murray BC (2010) Crater population and resurfacing of the Martian north polar layered deposits. J Geophys Res 115, E08006. doi:10.1029/2009JE003523

    Google Scholar 

  • Barata T, Alves EI, Machado A, Barberes GA (2012) Characterization of palimpsest craters on Mars. Planet Space Sci 72:62–69

    Article  Google Scholar 

  • Barlow, NG, Perez CB (2003) Martian impact crater ejecta morphologies as indicators of the distribution of subsurface volatiles. J Geophys Res 108. doi: 10.1029/2002JE002036

    Google Scholar 

  • Basilevsky AT, Keller HU (2007) Craters, smooth terrains, flows, and layering on the comet nuclei. Solar Syst Res 41(2):109–117

    Article  Google Scholar 

  • Boynton W, Feldman W, Squyres S, Prettyman T (2002) Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits. Science 297:81–85

    Article  Google Scholar 

  • Clifford S (1993) A model for the hydrologic and climatic behavior of water on Mars. J Geophys Res 98:10973–11016

    Article  Google Scholar 

  • Colaprete A, Jakosky B (1998) Ice flow and rock glaciers on Mars. J Geophys Res 103:5897–5909

    Article  Google Scholar 

  • Dombard AJ, McKinnon WB (2006) Elastoviscoplastic relaxation of impact crater topography with application to Ganymede and Callisto. J Geophys Res 111:E01001. doi:10.1029/2005JE002445

    Google Scholar 

  • Hall JL, Solomon SC, Head JW (1981) Lunar floor-fractured craters: evidence for viscous relaxation of crater topography. J Geophys Res 86:9537–9552

    Article  Google Scholar 

  • Hartmann WK (1966) Early lunar cratering. Icarus 5:406–418

    Article  Google Scholar 

  • Hartmann WK, Esquerdo G (1999) “Pathological” Martian craters: evidence for a transient obliteration event? Meteorit Planet Sci 34:159–165

    Article  Google Scholar 

  • Holt JW et al (2008) Radar sounding evidence for buried glaciers in the southern mid-latitudes of Mars. Science 322:1235–1238

    Article  Google Scholar 

  • Jankowski DJ, Squyres SW (1992) The topography of impact craters in “softened” terrain on Mars. Icarus 100:26–39

    Article  Google Scholar 

  • Kirchoff MR, Schenk P (2009) Crater modification and geologic activity in Enceladus’ heavily cratered plains: evidence from the impact crater distribution. Icarus 202:656–668

    Article  Google Scholar 

  • Koutnik M, Byrne S, Murray B (2002) South polar layered deposits of Mars: the cratering record. J Geophys Res 107:10-1–10-10. doi:10.1029/2001JE001805

    Google Scholar 

  • Kreslavsky M, Head J (2003) North–south topographic slope asymmetry on Mars: evidence for insolation-related erosion at high obliquity. Geophys Res Lett 30:1815. doi:10.1029/2003GL017795

    Article  Google Scholar 

  • Kreslavsky M, Head J, Marchant D (2008) Periods of active permafrost layer formation during the geological history of Mars: implications for circum-polar and mid-latitude surface processes. Planet Space Sci 56:289–302

    Article  Google Scholar 

  • Li H, Robinson M, Jurdy D (2005) Origin of Martian northern hemisphere mid-latitude lobate debris aprons. Icarus 176:382–394

    Article  Google Scholar 

  • Mangold N, Allemand P (2001) Topographic analysis of features related to ice on Mars. Geophys Res Lett 28:407–410

    Article  Google Scholar 

  • Masursky H (1964) A preliminary report on the role of isostatic rebound in the geologic development of the lunar crater Ptolemaeus. Astrogeologic studies, annual progress report A. U.S. Geological Survey, Washington, DC, pp 102–134

    Google Scholar 

  • Milliken R, Mustard J, Goldsby D (2003) Viscous flow features on the surface of Mars: observations from high-resolution Mars Orbiter Camera (MOC) images. J Geophys Res 108. doi:10.1029/2002JE002005

    Google Scholar 

  • Mouginis-Mark PJ (1979) Martian fluidized crater morphology: variations with crater size, latitude, altitude, and target material. J Geophys Res 84:8011–8022

    Article  Google Scholar 

  • Parmentier EM, Head JW (1981) Viscous relaxation of impact craters on icy planetary surfaces: determination of viscosity variation with depth. Icarus 47:100–111

    Article  Google Scholar 

  • Parsons RA, Nimmo F (2009) North–south asymmetry in Martian crater slopes. J Geophys Res 114. doi:10.1029/2007JE003006

    Google Scholar 

  • Pathare AV, Paige DA, Turtle E (2005) Viscous relaxation of craters within the Martian south polar layered deposits. Icarus 174(2):396–418

    Article  Google Scholar 

  • Perron JT, Dietrich WE, Howard AD, McKean JA, Pettinga JR (2003) Ice-driven creep on Martian debris slopes. Geophys Res Lett 30. doi:10.1029/2003/GL017603

    Google Scholar 

  • Plaut J et al (2007) Subsurface radar sounding of the south polar layered deposits of Mars. Science 316:92–95

    Article  Google Scholar 

  • Robuchon G, Nimmo F, Roberts J, Kirchoff M (2011) Impact basin relaxation at Iapetus. Icarus 214:82–90

    Article  Google Scholar 

  • Schaller EL, Murray B, Pathare AV, Rasmussen J, Byrne S (2005) Modification of secondary craters on the Martian South Polar Layered Deposits. J Geophys Res 110. doi:10.1029/2004JE002334

    Google Scholar 

  • Senft LE, Stewart ST (2008) Impact crater formation in icy layered terrains on Mars. Meteorit Planet Sci 43(12):1993–2013

    Article  Google Scholar 

  • Soderblom LA, Kreidler TJ, Masursky H (1973) Latitudinal distribution of a debris mantle on the Martian surface. J Geophys Res 78(20):4117–4122

    Article  Google Scholar 

  • Squyres S (1989) Urey prize lecture: water on Mars. Icarus 79:229–288

    Article  Google Scholar 

  • Squyres S, Carr M (1986) Geomorphic evidence for the distribution of ground ice on Mars. Science 231:249–252

    Article  Google Scholar 

  • Stewart ST, Valiant GJ (2006) Martian subsurface properties and crater formation processes inferred from fresh impact crater geometries. Meteorit Planet Sci 41:1509–1537

    Article  Google Scholar 

  • Strom RG, Croft SK, Barlow NG (1992) The Martian impact cratering record. In Mars: Kieffer HH, Jakosky BM, Snyder CW, Matthews MS (eds). The University of Arizona Press, Tucson, AZ, pp 383–423

    Google Scholar 

  • Thomas PJ, Schubert G (1988) Power law rheology of ice and the relaxation style and retention of craters on Ganymede. J Geophys Res 93:13755–13762

    Article  Google Scholar 

  • Willmes M, Reiss D, Hiesinger H, Zanetti M (2012) Surface age of the ice–dust mantle deposit in Malea Planum, Mars. Planet Space Sci 60:199–206

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle R. Koutnik .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Koutnik, M.R. (2014). Softened Crater. In: Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9213-9_357-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9213-9_357-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-9213-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics