Skip to main content

Radar Feature

  • Living reference work entry
  • First Online:
Encyclopedia of Planetary Landforms

Definition

Any region on a geologic surface that shows characteristic physical or dielectric properties, different from that of the surroundings and/or the global average, which are identified through the interaction between the surface and the radar signal.

The radar signal produces a reflected signal, whose amplitudes and polarizations depend upon the relative geometry of the feature and the dielectric properties of the media.

Synonyms

Radar albedo feature

Related Terms

Microwave imaging

Description

Any surface feature discernible on radar images. A radar feature is characterized by the portion of reflected radar signal due to a physical roughness or topographical change of the surface or a compositional change between terrain units in a geologic surface.

Subtypes

Many landform types have distinct radar signatures. Rough mountains or blocky impact ejecta are typically radar-bright, while smooth surfaces, e.g., lakes, are typically radar-dark. Many types of prominent radar features...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bondarenko NV, Kreslavsky MA, Head JW (2006) North–south roughness anisotropy on Venus from the Magellan Radar Altimeter: Correlation with geology. J Geophys Res 111:E06S12. doi:10.1029/2005JE002599

    Google Scholar 

  • Carter LM, Campbell DB, Campbell BA (2006) Volcanic deposits in shield fields and highland regions on Venus: surface properties from radar polarimetry. J Geophys Res 111:E06005. doi:10.1029/2005JE002519

    Google Scholar 

  • Chabot NL, Ernst CM, Harmon JK, Murchie SL, Solomon SC, Blewett DT, Denevi BW (2013) Craters hosting radar-bright deposits in Mercury’s north polar region: areas of persistent shadow determined from MESSENGER images. J Geophys Res Planet 118:26–36. doi:10.1029/2012JE004172

    Article  Google Scholar 

  • Connors C (1995) Determining heights and slopes of fault scarps and other surfaces on Venus using Magellan stereo radar. J Geophys Res 100(E7):14361–14381. doi:10.1029/95JE01134

    Article  Google Scholar 

  • ESA (2000) Parameters affecting radar backscatter. ESA Earthnet Online. http://earth.esa.int/applications/data_util/SARDOCS/spaceborne/Radar_Courses/Radar_Course_II/parameters_affecting.htm

  • Farr TG (1993) Radar interactions with geologic surfaces. In: Ford JP et al (eds) Guide to Magellan image interpretation, JPL Publication, 93-24. NASA, Jet Propulsion Laboratory, Pasadena, pp 45–56

    Google Scholar 

  • Farr TG et al (2007) The Shuttle Radar Topography Mission. Rev Geophys 45:RG2004. doi:10.1029/2005RG000183

    Article  Google Scholar 

  • Freeman T (1996) What is imaging radar? NASA/JPL’s Imaging Radar Program. http://southport.jpl.nasa.gov/desc/imagingradarv3.html

  • Garvin JB, Head JW, Pettengill GH, Zisk SH (1985) Venus global radar reflectivity and correlations with elevation. J Geophys Res 90(B8):6859–6871

    Article  Google Scholar 

  • Gelautz M, Weinbergmair F, Leberl F (1996) On the detection and exploitation of layover in Magellan SAR imagery. Int Arch Photogramm Remote Sens 31(B4):283–288, Vienna

    Google Scholar 

  • Harmon JK, Slade MA, Rice MS (2011) Radar imagery of Mercury’s putative polar ice: 1999–2005 Arecibo results. Icarus 211:37–50

    Article  Google Scholar 

  • ITU (2014) Operational and technical characteristics and protection criteria of radio altimeters utilizing the band 4 200-4 400 MHz. Recommendation ITU-R M.2059-0. International Telecommunication Union, Geneva.

    Google Scholar 

  • Langhans MH, Jaumann R, Stephan K et al (2012) Titan’s fluvial valleys: morphology, distribution, and spectral properties. Planet Space Sci 60:34–51

    Article  Google Scholar 

  • Le Corre L, Le Mouélic S, Sotin C, Combe J-P, Rodriguez S et al (2009) Analysis of a cryolava flow-like feature on Titan. Planet Space Sci 57:870–879

    Article  Google Scholar 

  • Leberl F (1990) Radargrammetric image processing. Artech House, Norwood

    Google Scholar 

  • Lillesand TM, Kiefer RW (2000) Remote sensing and image interpretation. Wiley, New York

    Google Scholar 

  • Lorenz RD, Biolluz G, Encrenaz P, Janssen MA, West RD, Muhleman DO (2003) Cassini RADAR: prospects for Titan surface investigations using the microwave radiometer. Planet Space Sci 51:353–364

    Article  Google Scholar 

  • Meric S, Fayard F, Pottier E (2009) Radargrammetric SAR image processing. In: Pei-Gee Peter Ho (ed) Geoscience and remote sensing. InTech, Rijeka 598p doi:10.5772/46146

    Google Scholar 

  • Nunes DC, Phillips RJ (2006) Radar subsurface mapping of the polar layered deposits on Mars. J Geophys Res 111(E6), CiteID E06S21

    Google Scholar 

  • Ori GG, Di Lorenzo S, Ogliani F, Seu R, Biccari D (2002) The martian subsurface from the orbiting GPR MARSIS and SHARAD: detection and analysis of possible flood basalts. Lunar Planet Sci XXXIII, abstract #1503, Houston

    Google Scholar 

  • Plaut JJ, Picardi G, Safaeinili A, Ivanov AB et al (2007) Subsurface radar sounding of the south polar layered deposits of Mars. Science 316(5821):92–95

    Article  Google Scholar 

  • Roth LE, Wall SD (eds) (1995) The face of Venus, NASA, SP-520. National Aeronautics and Space Administration, Washington, DC

    Google Scholar 

  • Sandia (2005) What is synthetic aperture radar? http://www.sandia.gov/radar/whatis.html

  • Sandwell DT (2011) Radar altimetry. http://topex.ucsd.edu/rs/altimetry.pdf

  • Sandwell DT, Smith WHF (nd) Exploring the ocean basins with satellite altimeter data. http://www.ngdc.noaa.gov/mgg/bathymetry/predicted/explore.HTML

  • Schaber GG, Breed CS (1999) The importance of SAR wavelength in penetrating blown sand in northern Arizona. Remote Sens Environ 69(2):87–104. doi:10.1016/s0034-4257(99)00013-9

    Article  Google Scholar 

  • Seu R et al (2007) The SHAllow RADar (SHARAD) experiment, a subsurface sounding radar for MRO. Mem Soc Astron Ital Suppl 11:26–36

    Google Scholar 

  • Short NM (2005) The remote sensing tutorial. https://www.fas.org/irp/imint/docs/rst/

  • Simpson RA, Harmon JK, Zosk SH, Thompson TW, Muhleman DO (1992) Radar determination of Mars surface properties. In: Kieffer HH et al (eds) Mars. University of Arizona Press, Tucson, pp 652–685

    Google Scholar 

  • Slade MA, Butler BJ, Muhleman DO (1992) Mercury radar imaging: evidence for polar ice. Science 258:635–640

    Article  Google Scholar 

  • Spudis PD et al (2013) Evidence for water ice on the moon: results for anomalous polar craters from the LRO Mini-RF imaging radar. J Geophys Res Planet 118. doi:10.1002/jgre.20156

    Google Scholar 

  • Stofan ER, Wall SD, Stiles BW, Kirk RL, West RD, Callahan PS (nd) Cassini RADAR users guide. NASA. http://pds-imaging.jpl.nasa.gov/documentation/Cassini_RADAR_Users_Guide.pdf

  • Stofan ER, Elachi C, Lunine JI, Lorenz RD, Stiles B, Mitchell KL, Ostro S, Soderblom L, Wood C, Zebker H, Wall S, Janssen M, Kirk R, Lopes R, Paganelli F, Radebaugh J, Wye L, Anderson Y, Allison M, Boehmer R, Callahan P, Encrenaz P, Flamini E, Francescetti G, Gim Y, Hamilton G, Hensley S, Johnson WTK, Kelleher K, Muhleman D, Paillou P, Picardi G, Posa F, Roth L, Seu R, Shaffer S, Vetrella S, West R (2007) The lakes of Titan. Nature 445(7123):61–64

    Article  Google Scholar 

  • Tapley IJ (2002) Radar imaging. In: Papp É (ed) Geophysical and remote sensing methods for regolith exploration, CRC LEME open file report, 144. CRC LEME, Bentley, pp 22–32

    Google Scholar 

  • Wolff C (2012) Synthetic aperture radar. http://www.radartutorial.eu/20.airborne/ab07.en.html. Accessed 22 Nov 2012

  • Young C (ed) (1990) The Magellan Venus explorer’s guide. JPL Publication, Pasadena

    Google Scholar 

  • Zuber MT, Phillips RJ, Andrews-Hanna JC, Asmar SW, Konopliv AS, Lemoine FG, Plaut JJ, Smith DE, Smrekar SE (2007) Density of Mars’ south polar layered deposits. Science 317(5845):1718

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Hargitai .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Hargitai, H., Kereszturi, Á., Paganelli, F. (2014). Radar Feature. In: Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9213-9_290-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9213-9_290-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-9213-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics