Skip to main content

Pyroclastic Deposits

  • Living reference work entry
  • First Online:
Encyclopedia of Planetary Landforms
  • 116 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alloway BV, Larsen G, Lowe DJ, Shane PAR, Westgate JA (2007) Tephrochronology. In: Elias SA (ed) Encyclopedia of quaternary science. Elsevier, London, pp 2869–2898

    Chapter  Google Scholar 

  • Bonadonna C, Ernst GGJ, Sparks RSJ (1998) Thickness variations and volume estimates of tephra fall deposits: the importance of particle Reynolds number. J Volcanol Geotherm Res 81:173–187

    Article  Google Scholar 

  • Brož P, Hauber E (2012) A unique volcanic field in Tharsis, Mars: pyroclastic cones as evidence for explosive eruptions. Icarus 218(1):88–99. doi:10.1016/j.icarus.2011.11.030

    Article  Google Scholar 

  • Busby C, Adams BF, Mattinson J, Deoreo S (2006) View of an intact oceanic arc, from surficial to mesozonal levels: Cretaceous Alisitos arc, Baja California. J Volcanol Geotherm Res 149:1–46

    Article  Google Scholar 

  • Carlson RH, Roberts WA (1963) Project Sedan mass distribution and throwout, PNE-217F. The Boeing Company, Seattle

    Google Scholar 

  • Carter LM, Campbell BA, Hawke BR, Campbell DB, Nolan MC (2009) Radar remote sensing of pyroclastic deposits in the southern Mare Serenitatis and Mare Vaporum regions of the Moon. J Geophys Res Planet 114(E11). doi:10.1029/2009je003406

    Google Scholar 

  • Cas RAF, Wright JV (1987) Volcanic successions: modern and ancient. Allen and Unwin, London

    Book  Google Scholar 

  • Crown DA, Greeley R (1993) Volcanic geology of Hadriaca Patera and the eastern Hellas region of Mars. J Geophys Res 98(E2):3431–3451. doi:10.1029/92je02804

    Article  Google Scholar 

  • Degruyter W, Manga M (2011) Cryoclastic origin of particles on the surface of Enceladus. Geophys Res Lett 38:L16201. doi:10.1029/2011GL048235

    Article  Google Scholar 

  • Edgar LA, Grotzinger JP, Southard JB, Ewing RC, Lamb MP (2012) Criteria for the identification of pyroclastic surge deposits on mars: insight from Hunt’s Hole, New Mexico. 43rd Lunar Planet Sci Conf, abstract #2638, Houston

    Google Scholar 

  • Filiberto J, Gross J, Treiman AH (2010) Basaltic pyroclastic deposits on Earth and Mars: constraints for robotic exploration of martian pyroclastic deposits. 41st Lunar Planet Sci Conf, abstract #1936, Houston

    Google Scholar 

  • Fisher RV (1990) Transport and deposition of a pyroclastic surge across an area of high relief: the 18 May 1980 eruption of Mount St. Helens. Wash Geol Soc Am Bull 102:1038–1054

    Article  Google Scholar 

  • Gaddis LR, Staid MI, Tyburczy JA, Hawke BR, Petro NE (2003) Compositional analyses of lunar pyroclastic deposits. Icarus 161:262–280

    Article  Google Scholar 

  • Glasstone S, Dolan PJ (1977) The effects of nuclear weapons, 3rd edn. US. Department of Defense and U.S. Energy Research Development Administration, U.S. Government Printing Office, Washington, DC

    Book  Google Scholar 

  • Green DH, Ringwood AE (1974) Significance of a primitive lunar basaltic composition present in Apollo 15 soils and breccias. Earth Planet Sci Lett 19(1):1–8

    Article  Google Scholar 

  • Gregg TKP, Farley MA (2006) Mafic pyroclastic flows at Tyrrhena Patera, Mars: constraints from observations and models. J Volcanol Geotherm Res 155(1–2):81–89

    Article  Google Scholar 

  • Heiken GH, McKay DS (1974) Petrology of Apollo 17 soils. 5th Lunar Planet Sci, 843–860, Houston

    Google Scholar 

  • Hiesinger H, Head JW III (2004) The Syrtis Major volcanic province, Mars: synthesis from Mars Global Surveyor data. J Geophys Res 109:E01004. doi:10.1029/2003JE002143

    Google Scholar 

  • Kerber L, Head JW, Madeleine J-B, Forget F, Wilson L (2011a) The dispersal of pyroclasts from Apollinaris Patera, Mars: implications for the origin of the Medusae Fossae Formation. Icarus 216(1):212–220. doi:10.1016/j.icarus.2011.07.035

    Article  Google Scholar 

  • Kerber L, Head JW, Blewett DT, Solomon SC, Wilson L et al (2011b) The global distribution of pyroclastic deposits on Mercury: the view from MESSENGER flybys 1–3. Planet Space Sci 59:1895–1909

    Article  Google Scholar 

  • Kerber L, Head JW, Madeleine J-B, Forget F, Wilson L (2012) The dispersal of pyroclasts from ancient explosive volcanoes on Mars: implications for the friable layered deposits. Icarus 219(1):358–381. doi:10.1016/j.icarus.2012.03.016

    Article  Google Scholar 

  • Kieffer SW (1981) Fluid dynamics of the May 18 blast at Mount St. Helens. US Geol Surv Prof Pap 1250:379–400

    Google Scholar 

  • Kobayashi T, Okuno M (2003) The mode of eruptions and their tephra deposits. Glob Environ Res 6(2):29–36

    Google Scholar 

  • Kokelaar P, Busby C (1992) Subaqueous explosive eruption and welding of pyroclastic deposits. Science 257:196–201

    Article  Google Scholar 

  • Meyer C (2004) 15425–15427, 15365–15377, Green Glass Clods. Lunar Sample Compend, manuscript

    Google Scholar 

  • Meyer C (2010) 74220 Soil (or clod). Lunar Sample Compend

    Google Scholar 

  • Pfeiffer T, Costa A, Macedonio G (2005) A model for the numerical simulation of tephra fall deposits. J Volcanol Geotherm Res 140:273–294

    Article  Google Scholar 

  • Rava B, Hapke B (1987) An analysis of the Mariner 10 color ratio map of Mercury. Icarus 71:397–429

    Article  Google Scholar 

  • Sparks RSJ, Walker GPL (1973) The ground surge deposit: a third type of pyroclastic rock. Nature 241:62–64

    Article  Google Scholar 

  • Squyres SW, Arvidson RE, Blaney DL, Clark BC, Crumpler L, Farrand WH, Gorevan S, Herkenhoff KE, Hurowitz J, Kusack A, McSween HY, Ming DW, Morris RV, Ruff SW, Wang A, Yen A (2006) Rocks of the Columbia Hills. J Geophys Res 111:E02S11. doi:10.1029/2005je002562

    Google Scholar 

  • Squyres SW, Aharonson O, Clark BC, Cohen BA, Crumpler LS, de Souza PA, Farrand W, Gellert R, Grant J, Grotzinger G, Haldemann A, Johnson JR, Klingelhoefer G, Lewis JS, Li R, McCoy TJ, McEwen A, McSween HY, Ming D, Moore JM, Morris RV, Parker TJ, Rice JW, Ruff SW, Schmidt ME, Schroder C, Soderblom L, Yen A (2007) Pyroclastic activity at Home Plate in Gusev Crater, Mars. Science 316:738–742

    Article  Google Scholar 

  • Thorarinsson S (1954) The tephra fall from Hekla on March 29th, 1947, vol 2(3), The eruption of Hekla 1947–1948. H. F. Leiftur, Reykjavik, pp 1–78

    Google Scholar 

  • Usui T, McSween HY Jr, Clark BC III (2008) Petrogenesis of high-phosphorous Wishstone Class rocks in Gusev Crater, Mars. J Geophys Res 113:E12S44. doi:10.1029/2008JE003225

    Google Scholar 

  • Wilson L, Head JW (2007) Explosive volcanic eruptions on Mars: tephra and accretionary lapilli formation, dispersal and recognition in the geologic record. J Volcanol Geotherm Res 163(1–4):83–97

    Article  Google Scholar 

  • Wilson L, Head JW (2008) Tephra deposition on glaciers and ice sheets on Mars: influence on ice survival, debris content and flow behavior. J Volcanol Geotherm Res. doi:10.1016/j.jvolgeores.20 08.10.0 03

    Google Scholar 

  • Wilson L, Sparks RSJ, Huang TC, Watkins ND (1978) The control of volcanic column heights by eruption energetics and dynamics. J Geophys Res 83(B4):1829–1836

    Article  Google Scholar 

  • Wohletz KH (1998) Pyroclastic surges and compressible two-phase flow. In: Freundt A, Rosi M (eds) From magma to tephra. Elsevier, Amsterdam, pp 247–312

    Google Scholar 

  • Wohletz KH, Sheridan MF (1983) Hydrovolcanic explosions II. Evolution of basaltic tuff rings and tuff cones. Am J Sci 283:385–413

    Article  Google Scholar 

  • Wright JV, Smith AL, Self S (1980) A working terminology of pyroclastic deposits. J Volcanol Geotherm Res 8(2–4):315–336

    Article  Google Scholar 

  • Young GA (1965) The physics of the base surge. U.S. Naval Ordnance Lab NOLTR 64–103, AD-618733, White Oak

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin Filiberto Ph.D. .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Filiberto, J. (2014). Pyroclastic Deposits. In: Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9213-9_284-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9213-9_284-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-9213-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics