Mare (Moon)

  • Scott S. Hughes
  • Elizabeth A. Frank
  • Henrik Hargitai
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-9213-9_226-1

Definition

A large dark, smooth plain on the Moon formed when basaltic lava flowed into preexisting topographic depressions.

Category

Synonyms

Note

Mare as a geological term describing volcanic plains is used exclusively for the Moon. For the structural depression a mare occupies see basin.

Description

Low-albedo regions on the Moon. Maria may be circular if the flows filled an impact basin without breaching it or irregular in shape if they filled an irregularly shaped depression or breached a basin (e.g., Oceanus Procellarum). On large scales, maria are mostly smooth but lie at different topographic levels, indicating that they are derived from independent eruptions (Smith et al. 1997). Though mare terrains comprise a substantial part of the lunar surface (~16 % to 17 %), most flows are less than 500 m thick, forming only a thin veneer totaling about...

Keywords

Lunar Surface Basaltic Lava Large Igneous Province Giant Impact Mare Basalt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. Baldwin RB (1949) The face of the moon. University of Chicago, Chicago, p 239Google Scholar
  2. Baldwin RB (1969) Absolute ages of the lunar Maria and large craters. Icarus 11(3):320–331. doi:10.1016/0019-1035(69)90065-7CrossRefGoogle Scholar
  3. Baldwin RB (1970) Absolute ages of the lunar maria and large craters: II. The viscosity of the moon’s outer layers. Icarus 13(2):215–225. doi:10.1016/0019-1035(70)90052-7CrossRefGoogle Scholar
  4. Beer W, Mädler JH (1837) Der mond nach seinen kosmischen und individuellen verhältnissen; oder, Allgemeine vergleichende selenographie mit besonderer beziehung auf die von den verfassern herausgegebene Mappa selenographica. S. Schropp, BerlinGoogle Scholar
  5. Burt G (2008) Thomas Harriot’s drawings. Hampshire astronomical group magazine, “Hampshire sky” November. http://telescope400.org.uk/harriot-maps.htm
  6. Campbell BA, Hawke BR, Campbell DB (2009) Surface morphology of domes in the Marius hills and Mons Rümker regions of the moon from earth-based radar data. J Geophys Res 114(E1). CiteID E01001Google Scholar
  7. Chapman CR, Cohen BA, Grinspoon DH (2007) What are the real constraints on the existence and magnitude of the late heavy bombardment? Icarus 189:233–245CrossRefGoogle Scholar
  8. Comer RP, Solomon SC, Head JW (1985) Mars: thickness of the lithosphere from the tectonic response to volcanic loads. Rev Geophys 23:61–72CrossRefGoogle Scholar
  9. Elger TG (1895) The moon – a full description and map of its principal physical features. George Philip, LondonGoogle Scholar
  10. Elkins-Tanton LT, Burgess S, Yin Q-Z (2011) The lunar magma ocean: reconciling the solidification process with lunar petrology and geochronology. Earth Planet Sci Lett 304:326–336CrossRefGoogle Scholar
  11. Gilbert W (1651) De Mundo Nostro Sublunari Philosophia Nova. Amstelodami (Amsterdam) (reprint edn, Elsevier, Amsterdam, 1965)Google Scholar
  12. Gilbert GK (1892) The moon’s face: a study of the origin of its features. Philos Soc Wash Bull XII:241–292Google Scholar
  13. Gold T (1955) The lunar surface. Mon Not Royal Astron Soc 115:585CrossRefGoogle Scholar
  14. Gold T (1964) Structure of the moon’s surface. In: Salisbury JW, Glaser PE (eds) The lunar surface layer. Academic, London, pp 345–353CrossRefGoogle Scholar
  15. Gold T (1971) The nature of the lunar surface: recent evidence. Proc Am Philos Soc 115(2):74–82Google Scholar
  16. Green J (1962) The geosciences applied to lunar exploration. In: Kopal Z, Mikhailov ZK (eds) The moon. IAU symposium 14, Academic, pp 169–258Google Scholar
  17. Guthnick P (1906) Resultate aus photometrischen Beobachtungen der sechs helleren Saturntrabanten. Astronomische Nachrichten 171, 18 (4098):273–280Google Scholar
  18. Hapke B (1970) Inferences from the optical properties of the moon concerning the nature and evolution of the lunar surface. Radio Sci 5(2):293–299CrossRefGoogle Scholar
  19. Hargitai H, Shingareva K (2011) Planetary nomenclature: a representation of human culture and alien landscapes. In: Ruas A (ed) Advances in cartography and GIScience 2: Selection from ICC 2011. Springer, ParisGoogle Scholar
  20. Hartmann WK (1981) Discovery of multi-ring basins: Gestalt perception in planetary science. In: Schultz PH, Merrill RB (eds) Multi-ring basins. Proceedings of the lunar and planetary science, vol 12A. Pergamon Press, New York, pp 79–90Google Scholar
  21. Hartmann WK (2011) Discoveries and early research papers. In: Multi-ring impact basing on the moon. Planetary Science Institute, Tucson. http://www.psi.edu/epo/multiring_impact_basins/multiring_impact_basins.html. Accessed 11 Oct 2011
  22. Head JW III (1976) Lunar volcanism in space and time. Rev Geophys 14:265–300CrossRefGoogle Scholar
  23. Head J (1994) Lunar mare deposits: mechanisms of emplacement, stratigraphy, and implications for the nature and evolution of source regions and secondary crusts. Lunar Planet Sci Conf XXV:523, HoustonGoogle Scholar
  24. Head J (1997) Lunar mare basalt volcanism: early stages of secondary crustal formation and implications for petrogenetic evolution and magma emplacement processes. Lunar Planet Sci Conf XXVIII, abstract #1112, HoustonGoogle Scholar
  25. Head JW, Wilson L (1992) Lunar mare volcanism: stratigraphy, eruption conditions, and the evolution of secondary crusts. Geochim Cosmochim Acta 56:2155–2175CrossRefGoogle Scholar
  26. Head JW, Kreslavsky MA, Pratt S (2002) Northern lowlands of Mars: evidence for widespread volcanic flooding and tectonic deformation in the Hesperian period. J Geophys Res 107(E1):5004. doi:10.1029/2000JE001445CrossRefGoogle Scholar
  27. Hiesinger H, Jaumann R, Neukam G, Head JW (2000) Ages of mare basalts on the lunar nearside. J Geophys Res 105(E12):29239–29276CrossRefGoogle Scholar
  28. Hiesinger H, Head JW III, Wolf U, Jaumann R, Neukum G (2002) Lunar mare basalt flow units: thicknesses determined from crater size-frequency distributions. Geophys Res Lett 29(8):1248. doi:10.1029/2002GL014847CrossRefGoogle Scholar
  29. Hiesinger H, Head JW III, Wolf U, Jaumann R, Neukum G (2003) Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum. J Geophys Res 108(E7):5065. doi:10.1029/2002JE001985CrossRefGoogle Scholar
  30. Hiesinger H, Head JW III, Wolf U, Jaumann R, Neukum G (2010) Ages and stratigraphy of lunar mare basalts in Mare Frigoris and other nearside Maria based on crater size-frequency distribution measurements. J Geophys Res 115, E03003. doi:10.1029/2009JE003380Google Scholar
  31. Hörz F, Grieve R, Heiken G, Spudis P, Binder A (1991) Lunar surface processes. In: Heiken GH, Vaniman DT, French BM (eds) Lunar sourcebook – a user’s guide to the moon. Cambridge University Press/Lunar and Planetary Institute, HoustonGoogle Scholar
  32. Kepler J (1610) Letter to Galilei, Prague, 19 Apr 1610. In: Le Opere di Galileo Galilei, vol X. Barbera, Firenze 1965 No 297Google Scholar
  33. Konopliv AS, Binder A, Hood L, Kucinskas A, Sjogren WL, Williams JG (1998) Gravity field of the moon from lunar prospector. Science 281:1476–1480CrossRefGoogle Scholar
  34. Kopal Z (1969) The earliest maps of the moon. Moon 1(1):59–66CrossRefGoogle Scholar
  35. Kuiper GP (1954) On the origin of the lunar surface features. Proc Natl Acad Sci 40:1096–1112CrossRefGoogle Scholar
  36. Kuiper GP (1966) The surface of the moon. Trans Int Astron Union 12B:658–661Google Scholar
  37. Kuiper GP (1967) The lunar surface and the U.S. ranger programme. Proc Royal Soc Lond A 296, 1446:399–417Google Scholar
  38. Langrenus MF (1645) Plenilunii lumina Austriaca Philippica. BrusselGoogle Scholar
  39. Montgomery SL (1999) The moon and the western imagination. The University of Arizona Press, TucsonGoogle Scholar
  40. Neison E (1876) The moon and the condition and configurations of its surface. Longmans, Green, LondonGoogle Scholar
  41. Neumann GA, Zuber MT, Wieczorek MA, McGovern PJ, Lemoine FG, Smith DE (2004) Crustal structure of Mars from gravity and topography. J Geophys Res 109, E08002. doi:10.1029/2004JE002262Google Scholar
  42. Nyquist LE, Bogard DD, Shih C-Y (2001) Radiometric chronology of the Moon and Mars. In: The century of space science. Kluwer, Dordrecht, pp 1325–1376Google Scholar
  43. Pickering WH (1920) The origin of the lunar formations. Publ Astron Soc Pac 32(186):116–125CrossRefGoogle Scholar
  44. Plutarch (1893a) De faciae quae in orbe lunae apparet. In: Bernardakis GN (ed) Moralia. Teubner, LeipzigGoogle Scholar
  45. Plutarch (1893b) Moralia (XI, 63). On the opinions of the philosophers (De placitis philosophorum) Bernardakis GN (ed) = Pseudo-Plutarch, Placita Philosophorum (Opinions of the Philosophers) II. 25. = Sentiments concerning nature with which philosophers were delighted. In: The complete works of Plutarch: essays and miscellanies, Crowell, New York, 1909. vol III (trans: Dowell J)Google Scholar
  46. Plutarch (1909) Symposiacs. In: The complete works of Plutarch: essays and miscellanies III. Crowell, New York. https://ebooks.adelaide.edu.au/p/plutarch/symposiacs/index.html
  47. Plutarch (1957) Concerning the face which appears in the orb of the moon. In: Cherniss H (ed, trans) Moralia. Harvard University PressGoogle Scholar
  48. Proctor RA (1873) The moon. Longmans, Green, LondonGoogle Scholar
  49. Pumfrey S (2009) Harriot’s maps of the moon: new interpretations. Notes Rec Royal Soc 63(2):163–168CrossRefGoogle Scholar
  50. Richter P (1970) The literary remains of Leonardo cia Vinci, vol 2, 3rd edn. Sampson Low, Marston, London, p 167Google Scholar
  51. Schmidt JFJ (1856) Der Mond. Barth, Leipzig, p 163Google Scholar
  52. See TJJ (1910) The origin of the so-called craters on the moon by the impact of satellites, and the relation of these satellite indentations to the obliquities of the planets. Publ Astron Soc Pac 22(130):13–20CrossRefGoogle Scholar
  53. Sheenan W (1988) Planets & perception: telescopic views and interpretations, 1609–1909. University of Arizona Press, TucsonGoogle Scholar
  54. Shih C, Schonfeld E (1976) Mare basalt genesis: a cumulate-remelting model. Lunar Planet Sci Conf 7:1757–1792, HoustonGoogle Scholar
  55. Smith DE et al (1997) Topography of the moon from the Clementine Lidar. J Geophys Res 102:1591–1612CrossRefGoogle Scholar
  56. Snyder GA, Taylor LA, Neal CR (1992) A chemical model for generating the sources of mare basalts: combined equilibrium and fractional crystallization of the lunar magmasphere. Geochim Cosmochim Acta 56:3809–3823CrossRefGoogle Scholar
  57. Spudis PD (1999) Volcanism on the moon. In: Sigurdsson H, Stix J, Houghton BF, McNutt SR, Rymer H, (eds) Encyclopedia of volcanoes. Academic, New York, pp 697–709Google Scholar
  58. Taylor SR (1982) Planetary science: a lunar perspective. Lunar and Planetary Institute, HoustonGoogle Scholar
  59. Taylor SR, McLennan SM (2009) Planetary crusts: their composition, origin and evolution. Cambridge University Press, Cambridge, UKGoogle Scholar
  60. Urey HC (1952) The planets, their origin and development. Yale University Press, New HavenGoogle Scholar
  61. Walker D, Longhi J, Hays JF (1975) Differentiation of a very thick magma body and implications for the source regions of mare basalts. Proc Lunar Planet Sci Conf 6:1103–1120, HoustonGoogle Scholar
  62. Warren PH (1985) The magma ocean concept and lunar evolution. Annu Rev Earth Planet Sci 13:201–240CrossRefGoogle Scholar
  63. Webb TW (1859) Celestial objects for common telescopes. LongmanGoogle Scholar
  64. Wilhelms DE (1993) To a rocky moon – a geologists history of lunar exploration. The University of Arizona Press, TucsonGoogle Scholar
  65. Wood CA (2003) The modern moon. A personal view. Sky Publishing, Cambridge, MAGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Scott S. Hughes
    • 1
  • Elizabeth A. Frank
    • 2
  • Henrik Hargitai
    • 3
  1. 1.Department of GeosciencesIdaho State UniversityPocatelloUSA
  2. 2.Department of Geological SciencesUniversity of ColoradoBoulderUSA
  3. 3.Planetary Science Research GroupInstitute of Geography and Earth Sciences, Eötvös Loránd UniversityBudapestHungary