Skip to main content

Hemorrhagic Stroke

  • Reference work entry
  • First Online:

Abstract

Neuroimaging is integral in the diagnostic algorithm and follow-up of patients with hemorrhagic stroke. The role of the neuroimager is to recognize and localize the hemorrhage and attempt to determine its etiology. Non-contrast computed tomography has long been the initial imaging tool in the acute neurologic patient. As MRI technology and angiographic imaging has evolved, they too have proven to be beneficial in narrowing the differential diagnosis and triaging patient care. Several biological and physical characteristics contribute significantly to the appearance of blood products on neuroimaging. To adequately interpret images in the patient with hemorrhagic stroke, the evaluator must have a knowledge of the interplay between imaging modalities and intracranial blood products. Additionally, an understanding of technical parameters as well as the limitations of imaging modalities can be helpful in avoiding pitfalls. Recognition of typical imaging patterns and clinical presentations can further aid the evaluator in rapid diagnosis and directed care.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Broderick J, Connolly S, Feldmann E et al (2007) Guidelines for the management of spontaneous intracerebral hemorrhage in adults: 2007 update: a guideline from the American Heart Association/American Stroke Association Stroke Council, High Blood Pressure Research Council, and the Quality of Care and Outcomes in Research Interdisciplinary Working Group. Stroke 38(6):2001–2023

    Article  PubMed  Google Scholar 

  2. Adams HP Jr, del Zoppo G, Alberts MJ et al (2007) Guidelines for the early management of adults with ischemic stroke: a guideline from the American Heart Association/American Stroke Association Stroke Council, Clinical Cardiology Council, Cardiovascular Radiology and Intervention Council, and the Atherosclerotic Peripheral Vascular Disease and Quality of Care Outcomes in Research Interdisciplinary Working Groups: the American Academy of Neurology affirms the value of this guideline as an educational tool for neurologists. Stroke 38(5):1655–1711

    Article  PubMed  Google Scholar 

  3. Scott WR, New PF, Davis KR, Schnur JA (1974) Computerized axial tomography of intracerebral and intraventricular hemorrhage. Radiology 112(1):73–80

    Article  CAS  PubMed  Google Scholar 

  4. Greenberg JO, Skubick DL (1977) Unexpected brain hemorrhages and the value of computerized tomography. Comput Tomogr 1(4):349–357

    Article  CAS  PubMed  Google Scholar 

  5. Hounsfield GN (1973) Computerized transverse axial scanning (tomography). 1. Description of system. Br J Radiol 46(552):1016–1022

    Article  CAS  PubMed  Google Scholar 

  6. Weinstein MA, Duchesneau PM, MacIntyre WJ (1977) White and gray matter of the brain differentiated by computed tomography. Radiology 122(3):699–702

    Article  CAS  PubMed  Google Scholar 

  7. New PFJ, Aronow S (1976) Attenuation measurements of whole-blood and blood fractions in computed tomography. Radiology 121(3):635–640

    Article  CAS  PubMed  Google Scholar 

  8. Norman D, Price D, Boyd D, Fishman R, Newton TH (1977) Quantitative aspects of computed tomography of blood and cerebrospinal-fluid. Radiology 123(2):335–338

    Article  CAS  PubMed  Google Scholar 

  9. Bergstrom M, Ericson K, Levander B, Svendsen P, Larsson S (1977) Variation with time of the attenuation values of intracranial hematomas. J Comput Assist Tomogr 1(1):57–63

    Article  CAS  PubMed  Google Scholar 

  10. Dolinskas CA, Bilaniuk LT, Zimmerman RA, Kuhl DE (1977) Computed tomography of intracerebral hematomas. I. Transmission CT observations on hematoma resolution. AJR Am J Roentgenol 129(4):681–688

    Article  CAS  PubMed  Google Scholar 

  11. Tans JT (1977) Computed tomography of intracerebral hematoma. Clin Neurol Neurosurg 79(4):285–295

    Article  CAS  PubMed  Google Scholar 

  12. Messina AV, Chernik NL (1976) Computed tomography – resolving intracerebral hemorrhage. Radiology 118(3):609–613

    Article  CAS  PubMed  Google Scholar 

  13. Zhu XL, Chan MS, Poon WS (1997) Spontaneous intracranial hemorrhage: which patients need diagnostic cerebral angiography? A prospective study of 206 cases and review of the literature. Stroke 28(7):1406–1409

    Article  CAS  PubMed  Google Scholar 

  14. Broderick JP, Brott TG, Duldner JE, Tomsick T, Huster G (1993) Volume of intracerebral hemorrhage. A powerful and easy-to-use predictor of 30-day mortality. Stroke 24(7):987–993

    Article  CAS  PubMed  Google Scholar 

  15. Gado M, Phelps M (1975) The peripheral zone of increase density in cranial computed tomography. Radiology 117(1):71–74

    Article  CAS  PubMed  Google Scholar 

  16. Zacharia TT, Nguyen DT (2010) Subtle pathology detection with multidetector row coronal and sagittal CT reformations in acute head trauma. Emerg Radiol 17(2):97–102

    Article  PubMed  Google Scholar 

  17. Smith WP Jr, Batnitzky S, Rengachary SS (1981) Acute isodense subdural hematomas: a problem in anemic patients. AJR Am J Roentgenol 136(3):543–546

    Article  PubMed  Google Scholar 

  18. Schenck JF (1996) The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys 23(6):815–850

    Article  CAS  PubMed  Google Scholar 

  19. Saini S, Frankel RB, Stark DD, Ferrucci JT Jr (1988) Magnetism: a primer and review. AJR Am J Roentgenol 150(4):735–743

    Article  CAS  PubMed  Google Scholar 

  20. Thulborn KR, Brady TJ (1989) Iron in magnetic resonance imaging of cerebral hemorrhage. Magn Reson Q 5(1):23–38

    CAS  PubMed  Google Scholar 

  21. Bloembergen N (1948) Nuclear magnetic relaxation. M. Nijhoff, The Hague

    Book  Google Scholar 

  22. Koenig SH, Brown RD 3rd, Lindstrom TR (1981) Interactions of solvent with the heme region of methemoglobin and fluoro-methemoglobin. Biophys J 34(3):397–408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Gomori JM, Grossman RI (1988) Mechanisms responsible for the MR appearance and evolution of intracranial hemorrhage. Radiographics 8(3):427–440

    Article  CAS  PubMed  Google Scholar 

  24. Thulborn KR, Waterton JC, Matthews PM, Radda GK (1982) Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim Biophys Acta 714(2):265–270

    Article  CAS  PubMed  Google Scholar 

  25. Ingram VM (1961) Hemoglobin and its abnormalities. Thomas, Springfield, Ill

    Google Scholar 

  26. Pauling L, Coryell CD (1936) The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin. Proc Natl Acad Sci U S A 22(4):210–216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Dickerson RE, Geis I (1983) Hemoglobin: structure, function, evolution, and pathology. Benjamin/Cummings Publication, Menlo Park

    Google Scholar 

  28. Di Chiro G, Brooks RA, Girton ME et al (1986) Sequential MR studies of intracerebral hematomas in monkeys. AJNR Am J Neuroradiol 7(2):193–199

    PubMed  Google Scholar 

  29. Matz P, Turner C, Weinstein PR, Massa SM, Panter SS, Sharp FR (1996) Heme-oxygenase-1 induction in glia throughout rat brain following experimental subarachnoid hemorrhage. Brain Res 713(1–2):211–222

    Article  CAS  PubMed  Google Scholar 

  30. Thulborn KR, Sorensen AG, Kowall NW et al (1990) The role of ferritin and hemosiderin in the MR appearance of cerebral hemorrhage: a histopathologic biochemical study in rats. AJNR Am J Neuroradiol 11(2):291–297

    CAS  PubMed  Google Scholar 

  31. Bizzi A, Brooks RA, Brunetti A et al (1990) Role of iron and ferritin in MR imaging of the brain: a study in primates at different field strengths. Radiology 177(1):59–65

    Article  CAS  PubMed  Google Scholar 

  32. Gillis P, Koenig SH (1987) Transverse relaxation of solvent protons induced by magnetized spheres: application to ferritin, erythrocytes, and magnetite. Magn Reson Med 5(4):323–345

    Article  CAS  PubMed  Google Scholar 

  33. Zimmerman RD, Heier LA, Snow RB, Liu DP, Kelly AB, Deck MD (1988) Acute intracranial hemorrhage: intensity changes on sequential MR scans at 0.5 T. AJR Am J Roentgenol 150(3):651–661

    Article  CAS  PubMed  Google Scholar 

  34. Clark RA, Watanabe AT, Bradley WG Jr, Roberts JD (1990) Acute hematomas: effects of deoxygenation, hematocrit, and fibrin-clot formation and retraction on T2 shortening. Radiology 175(1):201–206

    Article  CAS  PubMed  Google Scholar 

  35. Atlas SW, DuBois P, Singer MB, Lu D (2000) Diffusion measurements in intracranial hematomas: implications for MR imaging of acute stroke. AJNR Am J Neuroradiol 21(7):1190–1194

    CAS  PubMed  Google Scholar 

  36. Gomori JM, Grossman RI, Yu-Ip C, Asakura T (1987) NMR relaxation times of blood: dependence on field strength, oxidation state, and cell integrity. J Comput Assist Tomogr 11(4):684–690

    Article  CAS  PubMed  Google Scholar 

  37. Gomori JM, Grossman RI, Goldberg HI, Zimmerman RA, Bilaniuk LT (1985) Intracranial hematomas: imaging by high-field MR. Radiology 157(1):87–93

    Article  CAS  PubMed  Google Scholar 

  38. Weingarten K, Zimmerman RD, Deo-Narine V, Markisz J, Cahill PT, Deck MD (1991) MR imaging of acute intracranial hemorrhage: findings on sequential spin-echo and gradient-echo images in a dog model. AJNR Am J Neuroradiol 12(3):457–467

    CAS  PubMed  Google Scholar 

  39. Edelman RR, Johnson K, Buxton R et al (1986) MR of hemorrhage: a new approach. AJNR Am J Neuroradiol 7(5):751–756

    CAS  PubMed  Google Scholar 

  40. Atlas SW, Mark AS, Grossman RI, Gomori JM (1988) Intracranial hemorrhage: gradient-echo MR imaging at 1.5 T. Comparison with spin-echo imaging and clinical applications. Radiology 168(3):803–807

    Article  CAS  PubMed  Google Scholar 

  41. Patel MR, Edelman RR, Warach S (1996) Detection of hyperacute primary intraparenchymal hemorrhage by magnetic resonance imaging. Stroke 27(12):2321–2324

    Article  CAS  PubMed  Google Scholar 

  42. Melki PS, Mulkern RV, Panych LP, Jolesz FA (1991) Comparing the FAISE method with conventional dual-echo sequences. J Magn Reson Imaging 1(3):319–326

    Article  CAS  PubMed  Google Scholar 

  43. Jones KM, Mulkern RV, Mantello MT et al (1992) Brain hemorrhage: evaluation with fast spin-echo and conventional dual spin-echo images. Radiology 182(1):53–58

    Article  CAS  PubMed  Google Scholar 

  44. Delgado Almandoz JE, Schaefer PW, Forero NP, Falla JR, Gonzalez RG, Romero JM (2009) Diagnostic accuracy and yield of multidetector CT angiography in the evaluation of spontaneous intraparenchymal cerebral hemorrhage. AJNR Am J Neuroradiol 30(6):1213–1221

    Article  CAS  PubMed  Google Scholar 

  45. Wong GK, Siu DY, Abrigo JM et al (2011) Computed tomographic angiography and venography for young or nonhypertensive patients with acute spontaneous intracerebral hemorrhage. Stroke 42(1):211–213

    Article  PubMed  Google Scholar 

  46. Tsuchiya K, Hachiya J, Mizutani Y, Yoshino A (1996) Three-dimensional helical CT angiography of skull base meningiomas. AJNR Am J Neuroradiol 17(5):933–936

    CAS  PubMed  Google Scholar 

  47. Hirai T, Korogi Y, Ono K, Uemura S, Yamashita Y (2004) Preoperative embolization for meningeal tumors: evaluation of vascular supply with angio-CT. AJNR Am J Neuroradiol 25(1):74–76

    PubMed  Google Scholar 

  48. Gross BA, Frerichs KU, Du R (2012) Sensitivity of CT angiography, T2-weighted MRI, and magnetic resonance angiography in detecting cerebral arteriovenous malformations and associated aneurysms. J Clin Neurosci 19(8):1093–1095

    Article  PubMed  Google Scholar 

  49. Dowlatshahi D, Wasserman JK, Momoli F et al (2014) Evolution of computed tomography angiography spot sign is consistent with a site of active hemorrhage in acute intracerebral hemorrhage. Stroke 45(1):277–280

    Article  PubMed  Google Scholar 

  50. Wada R, Aviv RI, Fox AJ et al (2007) CT angiography "spot sign" predicts hematoma expansion in acute intracerebral hemorrhage. Stroke 38(4):1257–1262

    Article  PubMed  Google Scholar 

  51. Delgado Almandoz JE, Yoo AJ, Stone MJ et al (2010) The spot sign score in primary intracerebral hemorrhage identifies patients at highest risk of in-hospital mortality and poor outcome among survivors. Stroke 41(1):54–60

    Article  PubMed Central  PubMed  Google Scholar 

  52. Demchuk AM, Dowlatshahi D, Rodriguez-Luna D et al (2012) Prediction of haematoma growth and outcome in patients with intracerebral haemorrhage using the CT-angiography spot sign (PREDICT): a prospective observational study. Lancet Neurol 11(4):307–314

    Article  PubMed  Google Scholar 

  53. Delgado Almandoz JE, Kelly HR, Schaefer PW et al (2012) CT angiography spot sign predicts in-hospital mortality in patients with secondary intracerebral hemorrhage. J Neurointerv Surg 4(6):442–447

    Article  PubMed  Google Scholar 

  54. Tomandl BF, Kostner NC, Schempershofe M et al (2004) CT angiography of intracranial aneurysms: a focus on postprocessing. Radiographics 24(3):637–655

    Article  PubMed  Google Scholar 

  55. Ng SH, Wong HF, Ko SF et al (1997) CT angiography of intracranial aneurysms: advantages and pitfalls. Eur J Radiol 25(1):14–19

    Article  CAS  PubMed  Google Scholar 

  56. Tanabe S, Uede T, Nonaka T, Ohtaki M, Hashi K (1998) Diagnosis of cerebral arteriovenous malformations with three-dimensional CT angiography. J Clin Neurosci 5(Suppl):33–38

    Article  PubMed  Google Scholar 

  57. Chappell ET, Moure FC, Good MC (2003) Comparison of computed tomographic angiography with digital subtraction angiography in the diagnosis of cerebral aneurysms: a meta-analysis. Neurosurgery 52(3):624–631; discussion 630–621

    Article  PubMed  Google Scholar 

  58. Tanaka H, Numaguchi Y, Konno S, Shrier DA, Shibata DK, Patel U (1997) Initial experience with helical CT and 3D reconstruction in therapeutic planning of cerebral AVMs: comparison with 3D time-of-flight MRA and digital subtraction angiography. J Comput Assist Tomogr 21(5):811–817

    Article  CAS  PubMed  Google Scholar 

  59. Gullberg GT, Wehrli FW, Shimakawa A, Simons MA (1987) MR vascular imaging with a fast gradient refocusing pulse sequence and reformatted images from transaxial sections. Radiology 165(1):241–246

    Article  CAS  PubMed  Google Scholar 

  60. Bradley WG Jr, Waluch V (1985) Blood flow: magnetic resonance imaging. Radiology 154(2):443–450

    Article  PubMed  Google Scholar 

  61. Keller PJ, Drayer BP, Fram EK, Williams KD, Dumoulin CL, Souza SP (1989) MR angiography with two-dimensional acquisition and three-dimensional display. Work in progress. Radiology 173(2):527–532

    Article  CAS  PubMed  Google Scholar 

  62. Felmlee JP, Ehman RL (1987) Spatial presaturation: a method for suppressing flow artifacts and improving depiction of vascular anatomy in MR imaging. Radiology 164(2):559–564

    Article  CAS  PubMed  Google Scholar 

  63. van Tyen R, Saloner D, Jou LD, Berger S (1994) MR imaging of flow through tortuous vessels: a numerical simulation. Magn Reson Med 31(2):184–195

    Article  PubMed  Google Scholar 

  64. Huston J 3rd, Rufenacht DA, Ehman RL, Wiebers DO (1991) Intracranial aneurysms and vascular malformations: comparison of time-of-flight and phase-contrast MR angiography. Radiology 181(3):721–730

    Article  PubMed  Google Scholar 

  65. Siegelman ES, Charafeddine R, Stolpen AH, Axel L (2000) Suppression of intravascular signal on fat-saturated contrast-enhanced thoracic MR arteriograms. Radiology 217(1):115–118

    Article  CAS  PubMed  Google Scholar 

  66. Deutschmann HA, Augustin M, Simbrunner J et al (2007) Diagnostic accuracy of 3D time-of-flight MR angiography compared with digital subtraction angiography for follow-up of coiled intracranial aneurysms: influence of aneurysm size. AJNR Am J Neuroradiol 28(4):628–634

    CAS  PubMed  Google Scholar 

  67. Bosmans H, Wilms G, Marchal G, Demaerel P, Baert AL (1995) Characterisation of intracranial aneurysms with MR angiography. Neuroradiology 37(4):262–266

    Article  CAS  PubMed  Google Scholar 

  68. Heidenreich JO, Schilling AM, Unterharnscheidt F et al (2007) Assessment of 3D-TOF-MRA at 3.0 Tesla in the characterization of the angioarchitecture of cerebral arteriovenous malformations: a preliminary study. Acta Radiol 48(6):678–686

    Article  CAS  PubMed  Google Scholar 

  69. Noguchi K, Melhem ER, Kanazawa T, Kubo M, Kuwayama N, Seto H (2004) Intracranial dural arteriovenous fistulas: evaluation with combined 3D time-of-flight MR angiography and MR digital subtraction angiography. AJR Am J Roentgenol 182(1):183–190

    Article  PubMed  Google Scholar 

  70. Zhang H, Maki JH, Prince MR (2007) 3D contrast-enhanced MR angiography. J Magn Reson Imaging 25(1):13–25

    Article  CAS  PubMed  Google Scholar 

  71. Isoda H, Takehara Y, Isogai S et al (2000) MRA of intracranial aneurysm models: a comparison of contrast-enhanced three-dimensional MRA with time-of-flight MRA. J Comput Assist Tomogr 24(2):308–315

    Article  CAS  PubMed  Google Scholar 

  72. Maki JH, Prince MR, Londy FJ, Chenevert TL (1996) The effects of time varying intravascular signal intensity and k-space acquisition order on three-dimensional MR angiography image quality. J Magn Reson Imaging 6(4):642–651

    Article  CAS  PubMed  Google Scholar 

  73. Unlu E, Temizoz O, Albayram S et al (2006) Contrast-enhanced MR 3D angiography in the assessment of brain AVMs. Eur J Radiol 60(3):367–378

    Article  PubMed  Google Scholar 

  74. White PM, Wardlaw JM, Easton V (2000) Can noninvasive imaging accurately depict intracranial aneurysms? A systematic review. Radiology 217(2):361–370

    Article  CAS  PubMed  Google Scholar 

  75. Locksley HB (1966) Natural history of subarachnoid hemorrhage, intracranial aneurysms and arteriovenous malformations. Based on 6368 cases in the cooperative study. J Neurosurg 25(2):219–239

    Article  CAS  PubMed  Google Scholar 

  76. Suzuki M, Matsui O, Kobayashi K et al (2003) Contrast-enhanced MRA for investigation of cerebral arteriovenous malformations. Neuroradiology 45(4):231–235

    CAS  PubMed  Google Scholar 

  77. Wilms G, Bosmans H, Marchal G et al (1995) Magnetic resonance angiography of supratentorial tumours: comparison with selective digital subtraction angiography. Neuroradiology 37(1):42–47

    Article  CAS  PubMed  Google Scholar 

  78. Sessa M (2008) Intracerebral hemorrhage and hypertension. Neurol Sci 29(Suppl 2):S258–S259

    Article  PubMed  Google Scholar 

  79. Qureshi AI, Tuhrim S, Broderick JP, Batjer HH, Hondo H, Hanley DF (2001) Spontaneous intracerebral hemorrhage. N Engl J Med 344(19):1450–1460

    Article  CAS  PubMed  Google Scholar 

  80. Mutlu N, Berry RG, Alpers BJ (1963) Massive cerebral hemorrhage. Clinical and pathological correlations. Arch Neurol 8:644–661

    Article  CAS  PubMed  Google Scholar 

  81. Nighoghossian N, Hermier M, Adeleine P et al (2002) Old microbleeds are a potential risk factor for cerebral bleeding after ischemic stroke: a gradient-echo T2*-weighted brain MRI study. Stroke 33(3):735–742

    Article  CAS  PubMed  Google Scholar 

  82. Morgenstern LB, Hemphill JC 3rd, Anderson C et al (2010) Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 41(9):2108–2129

    Article  PubMed Central  PubMed  Google Scholar 

  83. McEvoy AW, Kitchen ND, Thomas DG (2000) Intracerebral haemorrhage and drug abuse in young adults. Br J Neurosurg 14(5):449–454

    Article  CAS  PubMed  Google Scholar 

  84. Hemphill JC 3rd, Bonovich DC, Besmertis L, Manley GT, Johnston SC (2001) The ICH score: a simple, reliable grading scale for intracerebral hemorrhage. Stroke 32(4):891–897

    Article  PubMed  Google Scholar 

  85. Vernooij MW, van der Lugt A, Ikram MA et al (2008) Prevalence and risk factors of cerebral microbleeds: the Rotterdam Scan Study. Neurology 70(14):1208–1214

    Article  CAS  PubMed  Google Scholar 

  86. Greenberg SM, Vernooij MW, Cordonnier C et al (2009) Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol 8(2):165–174

    Article  PubMed Central  PubMed  Google Scholar 

  87. McCormick WF (1966) The pathology of vascular (“arteriovenous”) malformations. J Neurosurg 24(4):807–816

    Article  CAS  PubMed  Google Scholar 

  88. Al-Shahi R, Bhattacharya JJ, Currie DG et al (2003) Prospective, population-based detection of intracranial vascular malformations in adults: the Scottish Intracranial Vascular Malformation Study (SIVMS). Stroke 34(5):1163–1169

    Article  PubMed  Google Scholar 

  89. Meyers PM, Schumacher HC, Higashida RT et al (2010) Indications for the performance of intracranial endovascular neurointerventional procedures. A scientific statement from the American Heart Association Council on cardiovascular radiology and intervention, Stroke council, council on cardiovascular surgery and anesthesia, interdisciplinary council on peripheral vascular disease, and interdisciplinary council on quality of care and outcomes research. J Neurointerv Surg 2(2):177–188

    PubMed  Google Scholar 

  90. Stapf C, Mast H, Sciacca RR et al (2006) Predictors of hemorrhage in patients with untreated brain arteriovenous malformation. Neurology 66(9):1350–1355

    Article  CAS  PubMed  Google Scholar 

  91. Kidwell CS, Jahan R, Gornbein J et al (2013) A trial of imaging selection and endovascular treatment for ischemic stroke. N Engl J Med 368(10):914–923

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Zabramski JM, Wascher TM, Spetzler RF et al (1994) The natural history of familial cavernous malformations: results of an ongoing study. J Neurosurg 80(3):422–432

    Article  CAS  PubMed  Google Scholar 

  93. Huisman TA (2005) Intracranial hemorrhage: ultrasound, CT and MRI findings. Eur Radiol 15(3):434–440

    Article  PubMed  Google Scholar 

  94. Salmaggi A, Erbetta A, Silvani A, Maderna E, Pollo B (2008) Intracerebral haemorrhage in primary and metastatic brain tumours. Neurol Sci 29(Suppl 2):S264–S265

    Article  PubMed  Google Scholar 

  95. Kondziolka D, Bernstein M, Resch L et al (1987) Significance of hemorrhage into brain tumors: clinicopathological study. J Neurosurg 67(6):852–857

    Article  CAS  PubMed  Google Scholar 

  96. Lansberg MG, Albers GW, Wijman CA (2007) Symptomatic intracerebral hemorrhage following thrombolytic therapy for acute ischemic stroke: a review of the risk factors. Cerebrovasc Dis 24(1):1–10

    Article  PubMed  Google Scholar 

  97. Lansberg MG, Thijs VN, Bammer R et al (2007) Risk factors of symptomatic intracerebral hemorrhage after tPA therapy for acute stroke. Stroke 38(8):2275–2278

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Singer OC, Humpich MC, Fiehler J et al (2008) Risk for symptomatic intracerebral hemorrhage after thrombolysis assessed by diffusion-weighted magnetic resonance imaging. Ann Neurol 63(1):52–60

    Article  PubMed  Google Scholar 

  99. Bousser MG (2000) Cerebral venous thrombosis: diagnosis and management. J Neurol 247(4):252–258

    Article  CAS  PubMed  Google Scholar 

  100. Leach JL, Fortuna RB, Jones BV, Gaskill-Shipley MF (2006) Imaging of cerebral venous thrombosis: current techniques, spectrum of findings, and diagnostic pitfalls. Radiographics 26(Suppl 1):S19–S41; discussion S42-13

    Article  PubMed  Google Scholar 

  101. Cianfoni A, Colosimo C (2011) Problem solving in neuroradiology: expert consult, 1st edn. Elsevier, Philadelphia, pp 427–472

    Google Scholar 

  102. Tong KA, Ashwal S, Holshouser BA et al (2004) Diffuse axonal injury in children: clinical correlation with hemorrhagic lesions. Ann Neurol 56(1):36–50

    Article  PubMed  Google Scholar 

  103. Kim J, Smith A, Hemphill JC 3rd et al (2008) Contrast extravasation on CT predicts mortality in primary intracerebral hemorrhage. AJNR Am J Neuroradiol 29(3):520–525

    Article  CAS  PubMed  Google Scholar 

  104. Goldstein JN, Fazen LE, Snider R et al (2007) Contrast extravasation on CT angiography predicts hematoma expansion in intracerebral hemorrhage. Neurology 68(12):889–894

    Article  CAS  PubMed  Google Scholar 

  105. Ederies A, Demchuk A, Chia T et al (2009) Postcontrast CT extravasation is associated with hematoma expansion in CTA spot negative patients. Stroke 40(5):1672–1676

    Article  PubMed  Google Scholar 

  106. Becker KJ, Baxter AB, Bybee HM, Tirschwell DL, Abouelsaad T, Cohen WA (1999) Extravasation of radiographic contrast is an independent predictor of death in primary intracerebral hemorrhage. Stroke 30(10):2025–2032

    Article  CAS  PubMed  Google Scholar 

  107. Hallevi H, Albright KC, Aronowski J et al (2008) Intraventricular hemorrhage: anatomic relationships and clinical implications. Neurology 70(11):848–852

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Diringer MN, Edwards DF, Zazulia AR (1998) Hydrocephalus: a previously unrecognized predictor of poor outcome from supratentorial intracerebral hemorrhage. Stroke 29(7):1352–1357

    Article  CAS  PubMed  Google Scholar 

  109. Sacco S, Marini C, Toni D, Olivieri L, Carolei A (2009) Incidence and 10-year survival of intracerebral hemorrhage in a population-based registry. Stroke 40(2):394–399

    Article  PubMed  Google Scholar 

  110. Zahuranec DB, Gonzales NR, Brown DL et al (2006) Presentation of intracerebral haemorrhage in a community. J Neurol Neurosurg Psychiatry 77(3):340–344

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Davis SM, Broderick J, Hennerici M et al (2006) Hematoma growth is a determinant of mortality and poor outcome after intracerebral hemorrhage. Neurology 66(8):1175–1181

    Article  CAS  PubMed  Google Scholar 

  112. Hemphill JC 3rd, Farrant M, Neill TA Jr (2009) Prospective validation of the ICH Score for 12-month functional outcome. Neurology 73(14):1088–1094

    Article  PubMed Central  PubMed  Google Scholar 

  113. Parizel PM, Makkat S, Van Miert E, Van Goethem JW, van den Hauwe L, De Schepper AM (2001) Intracranial hemorrhage: principles of CT and MRI interpretation. Eur Radiol 11(9):1770–1783

    Article  CAS  PubMed  Google Scholar 

  114. Linfante I, Llinas RH, Caplan LR, Warach S (1999) MRI features of intracerebral hemorrhage within 2 hours from symptom onset. Stroke 30(11):2263–2267

    Article  CAS  PubMed  Google Scholar 

  115. Kim YW, Lawson MF, Hoh BL (2012) Nonaneurysmal subarachnoid hemorrhage: an update. Curr Atheroscler Rep 14(4):328–334

    Article  PubMed  Google Scholar 

  116. Carvi y Nievas MN, Archavlis E (2009) Atypical causes of nontraumatic intracranial subarachnoid hemorrhage. Clin Neurol Neurosurg 111(4):354–358

    Article  PubMed  Google Scholar 

  117. Delgado Almandoz JE, Jagadeesan BD, Refai D et al (2012) Diagnostic yield of repeat catheter angiography in patients with catheter and computed tomography angiography negative subarachnoid hemorrhage. Neurosurgery 70(5):1135–1142

    Article  PubMed  Google Scholar 

  118. Gee C, Dawson M, Bledsoe J et al (2012) Sensitivity of newer-generation computed tomography scanners for subarachnoid hemorrhage: a Bayesian analysis. J Emerg Med 43(1):13–18

    Article  PubMed  Google Scholar 

  119. Mark DG, Hung YY, Offerman SR et al (2013) Nontraumatic subarachnoid hemorrhage in the setting of negative cranial computed tomography results: external validation of a clinical and imaging prediction rule. Ann Emerg Med 62(1):1–10 e11

    Article  PubMed  Google Scholar 

  120. Verma RK, Kottke R, Andereggen L et al (2013) Detecting subarachnoid hemorrhage: comparison of combined FLAIR/SWI versus CT. Eur J Radiol 82(9):1539–1545

    Article  PubMed  Google Scholar 

  121. Wu Z, Li S, Lei J, An D, Haacke EM (2010) Evaluation of traumatic subarachnoid hemorrhage using susceptibility-weighted imaging. AJNR Am J Neuroradiol 31(7):1302–1310

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  122. Spickler E, Lufkin R, Teresi L et al (1990) MR imaging of acute subarachnoid hemorrhage. Comput Med Imaging Graph 14(1):67–77

    Article  CAS  PubMed  Google Scholar 

  123. Ibrahim GM, Weidauer S, Macdonald RL (2011) Interobserver variability in the interpretation of computed tomography following aneurysmal subarachnoid hemorrhage. J Neurosurg 115(6):1191–1196

    Article  PubMed  Google Scholar 

  124. Atlas SW, Thulborn KR (1998) MR detection of hyperacute parenchymal hemorrhage of the brain. AJNR Am J Neuroradiol 19(8):1471–1477

    CAS  PubMed  Google Scholar 

  125. Sailer AM, Wagemans BA, Nelemans PJ, de Graaf R, van Zwam WH (2014) Diagnosing intracranial aneurysms with MR angiography: systematic review and meta-analysis. Stroke 45(1):119–126

    Article  PubMed  Google Scholar 

  126. Cirillo M, Scomazzoni F, Cirillo L et al (2013) Comparison of 3D TOF-MRA and 3D CE-MRA at 3T for imaging of intracranial aneurysms. Eur J Radiol 82(12):e853–e859

    Article  PubMed  Google Scholar 

  127. Pierot L, Portefaix C, Rodriguez-Regent C, Gallas S, Meder JF, Oppenheim C (2013) Role of MRA in the detection of intracranial aneurysm in the acute phase of subarachnoid hemorrhage. J Neuroradiol 40(3):204–210

    Article  PubMed  Google Scholar 

  128. Roos YB, Beenen LF, Groen RJ, Albrecht KW, Vermeulen M (1997) Timing of surgery in patients with aneurysmal subarachnoid haemorrhage: rebleeding is still the major cause of poor outcome in neurosurgical units that aim at early surgery. J Neurol Neurosurg Psychiatry 63(4):490–493

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  129. Nieuwkamp DJ, de Gans K, Algra A et al (2005) Timing of aneurysm surgery in subarachnoid haemorrhage–an observational study in The Netherlands. Acta Neurochir (Wien) 147(8):815–821

    Article  CAS  Google Scholar 

  130. Velat GJ, Kimball MM, Mocco JD, Hoh BL (2011) Vasospasm after aneurysmal subarachnoid hemorrhage: review of randomized controlled trials and meta-analyses in the literature. World Neurosurg 76(5):446–454

    Article  PubMed  Google Scholar 

  131. Kimball MM, Velat GJ, Hoh BL (2011) Participants in the international multi-disciplinary consensus conference on the critical care management of subarachnoid H. Critical care guidelines on the endovascular management of cerebral vasospasm. Neurocrit Care 15(2):336–341

    Article  PubMed  Google Scholar 

  132. Bakker NA, Metzemaekers JD, Groen RJ, Mooij JJ, Van Dijk JM (2010) International subarachnoid aneurysm trial 2009: endovascular coiling of ruptured intracranial aneurysms has no significant advantage over neurosurgical clipping. Neurosurgery 66(5):961–962

    Article  PubMed  Google Scholar 

  133. Brinjikji W, Kallmes DF, White JB, Lanzino G, Morris JM, Cloft HJ (2010) Inter- and intraobserver agreement in CT characterization of nonaneurysmal perimesencephalic subarachnoid hemorrhage. AJNR Am J Neuroradiol 31(6):1103–1105

    Article  CAS  PubMed  Google Scholar 

  134. Kong Y, Zhang JH, Qin X (2011) Perimesencephalic subarachnoid hemorrhage: risk factors, clinical presentations, and outcome. Acta Neurochir Suppl 110(Pt 1):197–201

    PubMed  Google Scholar 

  135. Buyukkaya R, Yildirim N, Cebeci H et al (2014) The relationship between perimesencephalic subarachnoid hemorrhage and deep venous system drainage pattern and calibrations. Clin Imaging 38(3):226–230

    Article  PubMed  Google Scholar 

  136. Gentry LR, Godersky JC, Thompson B, Dunn VD (1988) Prospective comparative study of intermediate-field MR and CT in the evaluation of closed head trauma. AJR Am J Roentgenol 150(3):673–682

    Article  CAS  PubMed  Google Scholar 

  137. Ganz JC, Thuomas KA, Vlajkovic S et al (1993) Changes in intracranial morphology, regional cerebral water content and vital physiological variables during epidural bleeding. An experimental MR study in dogs. Acta Radiol 34(3):279–288

    CAS  PubMed  Google Scholar 

  138. Han JS, Kaufman B, Alfidi RJ et al (1984) Head trauma evaluated by magnetic resonance and computed tomography: a comparison. Radiology 150(1):71–77

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julius Griauzde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this entry

Cite this entry

Griauzde, J., Dickerson, E., Gemmete, J.J. (2016). Hemorrhagic Stroke. In: Saba, L., Raz, E. (eds) Neurovascular Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9029-6_46

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9029-6_46

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9028-9

  • Online ISBN: 978-1-4614-9029-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics