Advertisement

Essentials of Transcranial Doppler Ultrasound

Reference work entry

Abstract

Transcranial Doppler (TCD) ultrasound imaging is a noninvasive, portable imaging technique that can be used to evaluate the intracerebral arteries. TCD ultrasound has become an important modality in the monitoring and evaluation of vasospasm of the intracerebral arteries in patients with subarachnoid hemorrhage due to aneurysmal rupture. Advances in transcranial ultrasound imaging utilizing gray-scale, color Doppler flow, and spectral Doppler allow for direct visualization and flow velocity measurements within the vessels in real time. This is a significant improvement over the older “blind” technique which utilized a range-gated Doppler probe that inferred the vessels being interrogated by a complex set of parameters including vessel depth, flow direction, and probe orientation. TCD has also been found to be useful in the evaluation of patients with sickle cell disease who may be at the risk of stroke and determination of brain death, internal carotid artery (ICA) occlusion and collateral pathways, stenosis, arteriovenous malformations, and intracardiac right-to-left shunts.

Keywords

Internal Carotid Artery Sickle Cell Disease Brain Death Basilar Artery Cerebral Blood Flow Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kirsch JD, Mathur M, Johnson MH et al (2013) Advances in transcranial Doppler US: imaging ahead. Radiographics 33:E1–E14CrossRefPubMedGoogle Scholar
  2. 2.
    Aaslid R, Markwalder TM, Nornes H (1982) Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg 57(6):769–774CrossRefPubMedGoogle Scholar
  3. 3.
    Lupetin AR, Davis DA, Beckman I et al (1995) Transcranial Doppler sonography. Part 1. Principles, technique, and normal appearances. Radiographics 15:179–191CrossRefPubMedGoogle Scholar
  4. 4.
    Spencer MP, Reid JM (1979) Quantitation of carotid stenosis with continuous-wave (C-W) Doppler ultrasound. Stroke 10(3):326–330CrossRefPubMedGoogle Scholar
  5. 5.
    Marshall SA, Nyquist P, Ziai WC (2010) The role of transcranial Doppler ultrasonography in the diagnosis and management of vasospasm after aneurysmal subarachnoid hemorrhage. Neurosurg Clin N Am 21(2):291–303CrossRefPubMedGoogle Scholar
  6. 6.
    Keyrouz SG, Diringer MN (2007) Clinical review: prevention and therapy of vasospasm in subarachnoid hemorrhage. Crit Care 11(4):220PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Condette-Auliac S, Bracard S, Anxionnat E et al (2001) Vasospasm after subarachnoid hemorrhage: interest in diffusion-weighted MR imaging. Stroke 32:1818–1824CrossRefPubMedGoogle Scholar
  8. 8.
    Awasthi D (1997) Cerebral Vasospasm: current thinking and future trends. www.medschool.lsuhsc.edu/neurosurgery/nervecenter/spasm.html
  9. 9.
    Bederson JB, Connolly ES Jr, Batjer HH et al (2009) Guidelines for the management of aneurysmal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke 40(3):994–1025CrossRefPubMedGoogle Scholar
  10. 10.
    Rasulo FA, De Peri E, Lavinio A (2008) Transcranial Doppler ultrasound in intensive care. Eur J Anaesthesiol Suppl 42:167–173CrossRefPubMedGoogle Scholar
  11. 11.
    Kolias AG, Sen J, Belli A (2009) Pathogenesis of cerebral vasospasm following aneurysmal subarachnoid hemorrhage: putative mechanisms and novel approaches. J Neurosci Res 87:1–11CrossRefPubMedGoogle Scholar
  12. 12.
    Wozniak MA, Sloan MA, Rothman MI et al (1996) Detection of vasospasm by transcranial Doppler sonography: the challenges of the anterior and posterior cerebral arteries. J Neuroimaging 6(2):87–93PubMedGoogle Scholar
  13. 13.
    Torbey MT, Till-Karsten H, Bhardwaj A et al (2001) Effect of age on cerebral blood flow velocity and incidence of vasospasm after aneurysmal subarachnoid hemorrhage. Stroke 32:2005–2011CrossRefPubMedGoogle Scholar
  14. 14.
    Lindegaard KF, Nornes H, Bakke SJ et al (1989) Cerebral vasospasm diagnosis by means of angiography and blood velocity measurements. Acta Neurochir 100:12–24CrossRefPubMedGoogle Scholar
  15. 15.
    White H, Venkatesh B (2006) Intensive applications of transcranial Doppler in the ICU: a review. Intensive Care Med 32(7):981–994CrossRefPubMedGoogle Scholar
  16. 16.
    Sviri GE, Britz GW, Douville CM et al (2006) Transcranial Doppler grading criteria for basilar artery vasospasm. Neurosurgery 59(2):360–366CrossRefPubMedGoogle Scholar
  17. 17.
    Maakaon JE, Taher AT, Besa EC (2014) Sickle cell anemia. Medscape reference: emedicine.medscape.com/article/205926-overview
  18. 18.
    Frempong KO (1991) Stroke in sickle cell disease: demographic, clinical and therapeutic considerations. Semin Hematol 28:213–219Google Scholar
  19. 19.
    Adams RJ, MCvie V, Nichols FT et al (1992) The use of transcranial ultrasonography to predict stroke in sickle cell disease. NEJM 326:605–610CrossRefPubMedGoogle Scholar
  20. 20.
    Adams RJ, McKie VC, Carl EM et al (1997) Long term stroke risk in children with sickle cell disease screened with transcranial Doppler. Ann Neurol 42:699–704CrossRefPubMedGoogle Scholar
  21. 21.
    Adams RJ, McKie VC, Hsu L et al (1998) Prevention of a first stroke by transfusions in children with sickle cell anemia and abnormal results on transcranial Doppler ultrasonography. N Engl J Med 339:5–11CrossRefPubMedGoogle Scholar
  22. 22.
    Wijdicks EFM (2001) The diagnosis of brain death. N Engl J Med 344(16):1215–1221CrossRefPubMedGoogle Scholar
  23. 23.
    Ropper AH, Kehne SM, Wechsler L (1987) Transcranial Doppler in brain death. Neurology 37:1733–1735CrossRefPubMedGoogle Scholar
  24. 24.
    Petty GW, Mohr JP, Pedley TA et al (1990) The role of transcranial Doppler in confirming brain death: sensitivity, specificity, and suggestions for performance and interpretation. Neurology 40:300–303CrossRefPubMedGoogle Scholar
  25. 25.
    Roubec M, Kuliha M, Jonszta T et al (2011) Detection of intracranial arterial stenosis using transcranial color-coded duplex sonography, computed tomographic angiography, and digital subtraction angiography. J Ultrasound Med 30:1069–1075PubMedGoogle Scholar
  26. 26.
    Feldman E, Wilterdink JL, Kosinski A et al (2007) The stroke outcomes and neuroimaging on intracranial atherosclerosis trial. Neurology 68:2099–2116CrossRefGoogle Scholar
  27. 27.
    Hansberg T, Wong KS, Droste DW et al (2002) Effects of the ultrasound contrast-enhancing agent Levovist on the detection of intracranial arteries and stenoses in Chinese by transcranial Doppler ultrasound. Cerebrovasc Dis 14(2):105–108CrossRefPubMedGoogle Scholar
  28. 28.
    Droste DW, Jurgens R, Weber S et al (2000) Benefit of echocontrast-enhanced transcranial color-coded duplex ultrasound in the assessment of intracranial collateral pathways. Stroke 31(4):920–923CrossRefPubMedGoogle Scholar
  29. 29.
    Becker G, Greiner K, Kaune B et al (1991) Diagnosis and monitoring of subarachnoid hemorrhage by transcranial color-coded real-time sonography. Neurosurgery 28:814–820CrossRefPubMedGoogle Scholar
  30. 30.
    Klotzsch Z, Nahser HC, Fischer B et al (1996) Visualization of intracranial aneurysms by transcranial duplex sonography. Neuroradiology 38:555–559CrossRefPubMedGoogle Scholar
  31. 31.
    Turner CL, Kirkpatrick PJ (2000) Detection of intracranial aneurysms with unenhanced and echo contrast enhanced transcranial power Doppler. J Neurol Neurosurg Psychiatry 68:489–495PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Turner CL, Higgins JN, Kirkpatrick PJ (2003) Assessment of transcranial color-coded duplex sonography for the surveillance of intracranial aneurysms treated with Guglielmi detachable coils. Neurosurgery 53(4):866–871CrossRefPubMedGoogle Scholar
  33. 33.
    Hagen PT, Scholz DG, Edwards WD (1984) Incidence and size of patent foramen ovale during the first 10 decades of life: an autopsy study of 965 normal hearts. Mayo Clin Proc 59:17–20CrossRefPubMedGoogle Scholar
  34. 34.
    Schwerzman M, Nedeltchev K et al (2005) Prevalence in size of directly detected patent foramen ovale in migraine with aura. Neurology 65:1415–1418CrossRefGoogle Scholar
  35. 35.
    Schneider B, Zienkiewicz T, Jansen V et al (1996) Diagnosis of patent foramen ovale by transesophageal echocardiography and correlation with autopsy findings. Am J Cardiol 77:1202–1209CrossRefPubMedGoogle Scholar
  36. 36.
    Jauss M, Kaps M, Keberle M et al (1994) A comparison of transesophageal echocardiography and transcranial Doppler sonography with contrast medium for detection of patent foramen ovale. Stroke 25:1265–1267CrossRefPubMedGoogle Scholar
  37. 37.
    Miller DL, Averkiou MA, Brayman AA et al (2008) Bioeffects considerations for diagnostic ultrasound contrast agents. J Ultrasound Med 27(special issue):611–632PubMedGoogle Scholar
  38. 38.
    Bioeffects Committee of the American Institute of Ultrasound in Medicine (2008) American Institute of Ultrasound in Medicine consensus report on potential bioeffects of diagnostic ultrasound. J Ultrasound Med 27:503–515Google Scholar
  39. 39.
    The British Medical Ultrasound Society (2009) Guidelines for the safe use of diagnostic medical ultrasound equipmentGoogle Scholar
  40. 40.
    O’Brien WD, Deng CX, Harris GR et al (2008) The risk of exposure to diagnostic ultrasound in postnatal subjects: thermal effects. J Ultrasound Med 27:517–535PubMedCentralPubMedGoogle Scholar
  41. 41.
    Nelson TR, Fowlkes B, Abramowicz JS et al (2009) Ultrasound biosafety considerations for the practicing sonographer and sonologist. J Ultrasound Med 28:139–150PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Diagnostic RadiologyYale University School of MedicineNew HavenUSA

Personalised recommendations