Spinal Cord Infarction and Differential Diagnosis

  • Srikanth R. Boddu
  • Alessandro Cianfoni
  • Kyung-Wha Kim
  • Mohammad Amin Banihashemi
  • Emanuele Pravatà
  • Y. Pierre Gobin
  • Athos Patsalides
Reference work entry


Spinal cord infarction is a rare disease and constitutes one of the acute spinal emergencies. In comparison to its cerebral counterpart, the spinal cord infarction has extremely low incidence, possibly related to the abundance of the arterial anastomosis and low incidence of the atherosclerosis in the spinal arteries. Since the first spinal cord infarction reported in early nineteenth century, there has been remarkable progress in the understanding of this disease entity. However, the fact that there is no established standard of care treatment as of today highlights the complexity and challenging nature of this disease. In this chapter the arterial anatomy of the spinal cord, etiopathogenesis, and clinical presentation of the cord infarction with specific emphasis on the imaging findings and differential diagnosis are discussed. The role of catheter angiography was specifically addressed along with the merits and pitfalls of the noninvasive angiography. The chapter concludes a discussion on the current and potential future treatment strategies.


Watershed territory Thrombolysis Myelitis Infarction Digital subtraction angiography Embolization Signal-to-noise ratio Diffusion-weighted imaging Fast spin echo Gradient echo Diffusion tensor imaging Fiber tractography Echo-planar imaging Apparent diffusion coefficient Anterior spinal artery Posterior spinal artery Segmental artery Radicular artery Artery of Adamkiewicz Multiple sclerosis Neuromyelitis optica Idiopathic transverse myelitis Acute disseminated encephalomyelitis Acute polyneuropathy Subacute combined degeneration Neurosarcoidosis Neuro-Behcet’s disease AIDS-associated myelopathy Radiation myelitis 


  1. 1.
    Nedeltchev K, Loher TJ, Stepper F et al (2004) Long-term outcome of acute spinal cord ischemia syndrome. Stroke 35(2):560–565. doi:10.1161/01.STR.0000111598.78198.ECPubMedCrossRefGoogle Scholar
  2. 2.
    de Seze J, Stojkovic T, Breteau G et al (2001) Acute myelopathies clinical, laboratory and outcome profiles in 79 cases. Brain 124(8):1509–1521. doi:10.1093/brain/124.8.1509PubMedCrossRefGoogle Scholar
  3. 3.
    Martinelli V, Comi G, Rovaris M et al (1995) Acute myelopathy of unknown aetiology: a clinical, neurophysiological and MRI study of short- and long-term prognostic factors. J Neurol 242(8):497–503PubMedCrossRefGoogle Scholar
  4. 4.
    Woollam DH, Millen JW (1955) The arterial supply of the spinal cord and its significance. J Neurol Neurosurg Psychiatry 18(2):97–102PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Singer D (1902) The pathology of so-called acute myelitis. Brain 25(2):332–340CrossRefGoogle Scholar
  6. 6.
    Slager UT, Webb AT (1973) Pathologic findings in the spinal cord. Arch Pathol 96(6):388–394PubMedGoogle Scholar
  7. 7.
    Sandson TA, Friedman JH (1989) Spinal cord infarction. Report of 8 cases and review of the literature. Medicine (Baltimore) 68(5):282–292CrossRefGoogle Scholar
  8. 8.
    Hirtz D, Thurman DJ, Gwinn-Hardy K, Mohamed M, Chaudhuri AR, Zalutsky R (2007) How common are the “common” neurologic disorders? Neurology 68(5):326–337. doi:10.1212/01.wnl.0000252807.38124.a3PubMedCrossRefGoogle Scholar
  9. 9.
    Cheshire WP, Santos CC, Massey EW, Howard JF Jr (1996) Spinal cord infarction: etiology and outcome. Neurology 47(2):321–330. doi:10.1212/WNL.47.2.321PubMedCrossRefGoogle Scholar
  10. 10.
    Robertson CE, Brown RD Jr, Wijdicks EFM, Rabinstein AA (2012) Recovery after spinal cord infarcts: long-term outcome in 115 patients. Neurology 78(2):114–121. doi:10.1212/WNL.0b013e31823efc93PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Abercrombie J (1831) Pathological and practical researches on diseases of the brain and the spinal cord. Carey & Lea, PhiladelphiaGoogle Scholar
  12. 12.
    Tweedie A, Gerhard W (1842) A system of practical medicine comprised in a series of original dissertations. Lea & Blanchard, PhiladelphiaGoogle Scholar
  13. 13.
    Santillan A, Nacarino V, Greenberg E, Riina HA, Gobin YP, Patsalides A (2012) Vascular anatomy of the spinal cord. J Neurointerv Surg 4(1):67–74. doi:10.1136/neurintsurg-2011-010018PubMedCrossRefGoogle Scholar
  14. 14.
    Manelfe C, Lazorthes G, Roulleau J (1972) Arteries of the human spinal dura mater. Acta Radiol Diagn (Stockh) 13:829–841Google Scholar
  15. 15.
    Thron A (1988) Vascular anatomy of the spinal cord. Neuroradiological investigations and clinical syndromes. Springer, New YorkCrossRefGoogle Scholar
  16. 16.
    Hong MK-Y, Hong MK-H, Pan W-R, Wallace D, Ashton MW, Taylor GI (2008) The angiosome territories of the spinal cord: exploring the issue of preoperative spinal angiography. Laboratory investigation. J Neurosurg Spine 8(4):352–364. doi:10.3171/SPI/2008/8/4/352PubMedCrossRefGoogle Scholar
  17. 17.
    Lasjaunias P, Berenstein A, TerBrugge K (2001) Clinical vascular anatomy and variations. In: Surgical neuroangiography, vol 1. Springer, BerlinGoogle Scholar
  18. 18.
    Piscol K (1972) Blood supply of the spinal cord and its clinical importance. Schriftenr Neurol 8:1–91PubMedGoogle Scholar
  19. 19.
    Brockstein B, Johns L, Gewertz BL (1994) Blood supply to the spinal cord: anatomic and physiologic correlations. Ann Vasc Surg 8(4):394–399PubMedCrossRefGoogle Scholar
  20. 20.
    Lazorthes G, Poulhes J, Bastide G, Roulleau J, Chancholle AR (1958) Arterial vascularization of the spine; anatomic research and applications in pathology of the spinal cord and aorta. Neurochirurgie 4(1):3–19PubMedGoogle Scholar
  21. 21.
    Koshino T, Murakami G, Morishita K, Mawatari T, Abe T (1999) Does the Adamkiewicz artery originate from the larger segmental arteries? J Thorac Cardiovasc Surg 117(5):898–905PubMedCrossRefGoogle Scholar
  22. 22.
    Hyodoh H, Shirase R, Akiba H et al (2007) Double-subtraction maximum intensity projection MR angiography for detecting the artery of Adamkiewicz and differentiating it from the drainage vein. J Magn Reson Imaging 26(2):359–365. doi:10.1002/jmri.21024PubMedCrossRefGoogle Scholar
  23. 23.
    Charles YP, Barbe B, Beaujeux R, Boujan F, Steib J-P (2011) Relevance of the anatomical location of the Adamkiewicz artery in spine surgery. Surg Radiol Anat 33(1):3–9. doi:10.1007/s00276-010-0654-0PubMedCrossRefGoogle Scholar
  24. 24.
    Garland H, Greenberg J, Harriman DG (1966) Infarction of the spinal cord. Brain J Neurol 89(4):645–662CrossRefGoogle Scholar
  25. 25.
    Sliwa JA, Maclean IC (1992) Ischemic myelopathy: a review of spinal vasculature and related clinical syndromes. Arch Phys Med Rehabil 73(4):365–372PubMedCrossRefGoogle Scholar
  26. 26.
    Gilles FH, Nag D (1971) Vulnerability of human spinal cord in transient cardiac arrest. Neurology 21(8):833–839PubMedCrossRefGoogle Scholar
  27. 27.
    Azzarelli B, Roessmann U (1977) Diffuse “anoxic” myelopathy. Neurology 27(11):1049–1052PubMedCrossRefGoogle Scholar
  28. 28.
    Rothman SM, Nelson JS (1980) Spinal cord infarction in a patient with sickle cell anemia. Neurology 30(10):1072–1076PubMedCrossRefGoogle Scholar
  29. 29.
    Houdart R, Djindjian R (1966) Angiomas of the spinal cord. Proc R Soc Med 59(8):787–790PubMedCentralPubMedGoogle Scholar
  30. 30.
    Satran R (1988) Spinal cord infarction. Stroke 19(4):529–532PubMedCrossRefGoogle Scholar
  31. 31.
    Whiteley AM, Hauw JJ, Escourolle R (1979) A pathological survey of 41 cases of acute intrinsic spinal cord disease. J Neurol Sci 42(2):229–242PubMedCrossRefGoogle Scholar
  32. 32.
    Shakir RA, Sulaiman K, Kahn RA, Rudwan M (1990) Neurological presentation of neuro-Behçet’s syndrome: clinical categories. Eur Neurol 30(5):249–253PubMedCrossRefGoogle Scholar
  33. 33.
    Gibb WR, Urry PA, Lees AJ (1985) Giant cell arteritis with spinal cord infarction and basilar artery thrombosis. J Neurol Neurosurg Psychiatry 48(9):945–948PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Sawaya GR, Kaminski MJ (1990) Spinal cord infarction after cocaine use. South Med J 83(5):601–602PubMedCrossRefGoogle Scholar
  35. 35.
    Walden JE, Castillo M (2012) Sildenafil-induced cervical spinal cord infarction. AJNR Am J Neuroradiol 33(3):E32–E33. doi:10.3174/ajnr.A2628PubMedCrossRefGoogle Scholar
  36. 36.
    Adams HD, van Geertruyden HH (1956) Neurologic complications of aortic surgery. Ann Surg 144(4):574–609. Available at Accessed 20 Mar 2014PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Xenos ES, Abedi NN, Davenport DL et al (2008) Meta-analysis of endovascular vs open repair for traumatic descending thoracic aortic rupture. J Vasc Surg 48(5):1343–1351. doi:10.1016/j.jvs.2008.04.060PubMedCrossRefGoogle Scholar
  38. 38.
    Amabile P, Grisoli D, Giorgi R, Bartoli J-M, Piquet P (2008) Incidence and determinants of spinal cord ischaemia in stent-graft repair of the thoracic aorta. Eur J Vasc Endovasc Surg 35(4):455–461. doi:10.1016/j.ejvs.2007.11.005PubMedCrossRefGoogle Scholar
  39. 39.
    Maldonado TS, Rockman CB, Riles E et al (2004) Ischemic complications after endovascular abdominal aortic aneurysm repair. J Vasc Surg 40(4):703–709. doi:10.1016/j.jvs.2004.07.032; discussion 709–710PubMedCrossRefGoogle Scholar
  40. 40.
    Messé SR, Bavaria JE, Mullen M et al (2008) Neurologic outcomes from high risk descending thoracic and thoracoabdominal aortic operations in the era of endovascular repair. Neurocrit Care 9(3):344–351. doi:10.1007/s12028-008-9104-9PubMedCrossRefGoogle Scholar
  41. 41.
    Bavaria JE, Appoo JJ, Makaroun MS et al (2007) Endovascular stent grafting versus open surgical repair of descending thoracic aortic aneurysms in low-risk patients: a multicenter comparative trial. J Thorac Cardiovasc Surg 133(2):369–377. doi:10.1016/j.jtcvs.2006.07.040PubMedCrossRefGoogle Scholar
  42. 42.
    Setacci F, Sirignano P, De Donato G et al (2010) Endovascular thoracic aortic repair and risk of spinal cord ischemia: the role of previous or concomitant treatment for aortic aneurysm. J Cardiovasc Surg (Torino) 51(2):169–176Google Scholar
  43. 43.
    Crawford ES, Crawford JL, Safi HJ et al (1986) Thoracoabdominal aortic aneurysms: preoperative and intraoperative factors determining immediate and long-term results of operations in 605 patients. J Vasc Surg 3(3):389–404PubMedCrossRefGoogle Scholar
  44. 44.
    Gloviczki P, Cross SA, Stanson AW et al (1991) Ischemic injury to the spinal cord or lumbosacral plexus after aorto-iliac reconstruction. Am J Surg 162(2):131–136PubMedCrossRefGoogle Scholar
  45. 45.
    Ross RT (1985) Spinal cord infarction in disease and surgery of the aorta. Can J Neurol Sci 12(4):289–295PubMedGoogle Scholar
  46. 46.
    Mawad ME, Rivera V, Crawford S, Ramirez A, Breitbach W (1990) Spinal cord ischemia after resection of thoracoabdominal aortic aneurysms: MR findings in 24 patients. AJNR Am J Neuroradiol 11(5):987–991PubMedGoogle Scholar
  47. 47.
    Brusoni B, Colombo A, Merlo L, Marchetti G, Longo T (1978) Hemodynamic and metabolic changes induced by temporary clamping of the thoracic aorta. Eur Surg Res 10(3):206–216PubMedCrossRefGoogle Scholar
  48. 48.
    Hurst RW, Haskal ZJ, Zager E, Bagley LJ, Flamm ES (1998) Endovascular stent treatment of cervical internal carotid artery aneurysms with parent vessel preservation. Surg Neurol 50(4):313–317; discussion 317. Available at Accessed 20 Mar 2012PubMedCrossRefGoogle Scholar
  49. 49.
    Hughes JT, Brownell B (1966) Spinal cord ischemia due to arteriosclerosis. Arch Neurol 15(2):189–202PubMedCrossRefGoogle Scholar
  50. 50.
    Tubbs RS, Blouir MC, Romeo AK, Mortazavi MM, Cohen-Gadol AA (2011) Spinal cord ischemia and atherosclerosis: a review of the literature. Br J Neurosurg 25(6):666–670. doi:10.3109/02688697.2011.578774PubMedCrossRefGoogle Scholar
  51. 51.
    Duggal N, Lach B (2002) Selective vulnerability of the lumbosacral spinal cord after cardiac arrest and hypotension. Stroke 33(1):116–121. doi:10.1161/hs0102.101923PubMedCrossRefGoogle Scholar
  52. 52.
    Slavin RE, Gonzalez-Vitale JC, Marin OS (1975) Atheromatous emboli to the lumbosacral spinal cord. Stroke 6(4):411–415PubMedCrossRefGoogle Scholar
  53. 53.
    Coleman J (1898) Dissecting aneurysm. Trans R Acad Med Irel 16(1):116–124CrossRefGoogle Scholar
  54. 54.
    Tracci C, Cherry KJ Jr (2012) The aorta. In: Townsend CM (ed) Sabiston textbook of surgery. Saunders/Elsevier, Philadelphia, pp 1697–1724CrossRefGoogle Scholar
  55. 55.
    Gaul C, Dietrich W, Friedrich I, Sirch J, Erbguth FJ (2007) Neurological symptoms in type A aortic dissections. Stroke 38(2):292–297. doi:10.1161/01.STR.0000254594.33408.b1PubMedCrossRefGoogle Scholar
  56. 56.
    Suzuki T, Mehta RH, Ince H et al (2003) Clinical profiles and outcomes of acute type B aortic dissection in the current era: lessons from the International Registry of Aortic Dissection (IRAD). Circulation 108(Suppl 1):II312–II317. doi:10.1161/01.cir.0000087386.07204.09PubMedGoogle Scholar
  57. 57.
    Sladky JT, Rorke LB (1986) Perinatal hypoxic/ischemic spinal cord injury. Pediatr Pathol 6(1):87–101PubMedCrossRefGoogle Scholar
  58. 58.
    Thompson TP, Pearce J, Chang G, Madamba J (2004) Surfer’s myelopathy. Spine 29(16):E353–E356PubMedCrossRefGoogle Scholar
  59. 59.
    Chang CWJ, Donovan DJ, Liem LK et al (2012) Surfers’ myelopathy: a case series of 19 novice surfers with nontraumatic myelopathy. Neurology 79(22):2171–2176. doi:10.1212/WNL.0b013e31827595cdPubMedCrossRefGoogle Scholar
  60. 60.
    Shamji MF, Maziak DE, Shamji FM, Ginsberg RJ, Pon R (2003) Circulation of the spinal cord: an important consideration for thoracic surgeons. Ann Thorac Surg 76(1):315–321PubMedCrossRefGoogle Scholar
  61. 61.
    Nakamoto BK, Siu AM, Hashiba KA et al (2013) Surfer’s myelopathy: a radiologic study of 23 cases. AJNR Am J Neuroradiol 34(12):2393–2398. doi:10.3174/ajnr.A3599PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Hirose G, Singer P, Bass NH (1971) Successful treatment of posthypoxic action myoclonus with carbamazepine. JAMA 218(9):1432–1433PubMedCrossRefGoogle Scholar
  63. 63.
    Mori S, Sadoshima S, Tagawa K, Iino K, Fujishima M (1993) Massive spinal cord infarction with multiple paradoxical embolism: a case report. Angiology 44(3):251–256PubMedCrossRefGoogle Scholar
  64. 64.
    Naiman JL, Donohue WL, Prichard JS (1961) Fatal nucleus pulposus embolism of spinal cord after trauma. Neurology 11:83–87PubMedCrossRefGoogle Scholar
  65. 65.
    Tosi L, Rigoli G, Beltramello A (1996) Fibrocartilaginous embolism of the spinal cord: a clinical and pathogenetic reconsideration. J Neurol Neurosurg Psychiatry 60(1):55–60PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Srigley JR, Lambert CD, Bilbao JM, Pritzker KP (1981) Spinal cord infarction secondary to intervertebral disc embolism. Ann Neurol 9(3):296–301. doi:10.1002/ana.410090315PubMedCrossRefGoogle Scholar
  67. 67.
    Mathew P, Todd NV, Hadley DM, Adams JH (1993) Spinal cord infarction following meningitis. Br J Neurosurg 7(6):701–704PubMedCrossRefGoogle Scholar
  68. 68.
    Von Pohle WR (1996) Disseminated mucormycosis presenting with lower extremity weakness. Eur Respir J 9(8):1751–1753CrossRefGoogle Scholar
  69. 69.
    Brown AC, Ray CE (2012) Anterior spinal cord infarction following bronchial artery embolization. Semin Intervent Radiol 29(3):241–244. doi:10.1055/s-0032-1326936PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Gang DL, Dole KB, Adelman LS (1977) Spinal cord infarction following therapeutic renal artery embolization. JAMA 237(26):2841–2842PubMedCrossRefGoogle Scholar
  71. 71.
    Vujic I, Pyle R, Parker E, Mithoefer J (1980) Control of massive hemoptysis by embolization of intercostal arteries. Radiology 137(3):617–620. doi:10.1148/radiology.137.3.7444046PubMedCrossRefGoogle Scholar
  72. 72.
    Ozoilo K, Stein M (2013) Paraplegia complicating embolization for bleeding intercostal artery in penetrating trauma. Inj Extra 44(8):70–73. doi:10.1016/j.injury.2013.05.015CrossRefGoogle Scholar
  73. 73.
    Heller SL, Meyer JR, Russell EJ (1996) Spinal cord venous infarction following endoscopic sclerotherapy for esophageal varices. Neurology 47(4):1081–1085PubMedCrossRefGoogle Scholar
  74. 74.
    Tofuku K, Koga H, Yamamoto T, Yone K, Komiya S (2008) Spinal cord infarction following endoscopic variceal ligation. Spinal Cord 46(3):241–242. doi:10.1038/ Scholar
  75. 75.
    Neal JM, Bernards CM, Hadzic A et al (2008) ASRA practice advisory on neurologic complications in regional anesthesia and pain mMedicine. Reg Anesth Pain Med 33(5):404–415. doi:10.1016/j.rapm.2008.07.527PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Forbes G, Nichols DA, Jack CR Jr et al (1988) Complications of spinal cord arteriography: prospective assessment of risk for diagnostic procedures. Radiology 169(2):479–484. doi:10.1148/radiology.169.2.3174997PubMedCrossRefGoogle Scholar
  77. 77.
    Gonzalez LF, Zabramski JM, Tabrizi P, Wallace RC, Massand MG, Spetzler RF (2005) Spontaneous spinal subarachnoid hemorrhage secondary to spinal aneurysms: diagnosis and treatment paradigm. Neurosurgery 57(6):1127–1131; discussion 1127–1131PubMedCrossRefGoogle Scholar
  78. 78.
    Krishna V, Lazaridis C, Ellegala D et al (2012) Spinal cord infarction associated with subarachnoid hemorrhage. Clin Neurol Neurosurg 114(7):1030–1032. doi:10.1016/j.clineuro.2012.01.037PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Anthes DL, Theriault E, Tator CH (1996) Ultrastructural evidence for arteriolar vasospasm after spinal cord trauma. Neurosurgery 39(4):804–814PubMedCrossRefGoogle Scholar
  80. 80.
    Krings T, Lasjaunias PL, Hans FJ et al (2007) Imaging in spinal vascular disease. Neuroimaging Clin N Am 17(1):57–72. doi:10.1016/j.nic.2007.01.001PubMedCrossRefGoogle Scholar
  81. 81.
    Blatteau J-E, Gempp E, Simon O et al (2011) Prognostic factors of spinal cord decompression sickness in recreational diving: retrospective and multicentric analysis of 279 cases. Neurocrit Care 15(1):120–127. doi:10.1007/s12028-010-9370-1PubMedCrossRefGoogle Scholar
  82. 82.
    Aharon-Peretz J, Adir Y, Gordon CR, Kol S, Gal N, Melamed Y (1993) Spinal cord decompression sickness in sport diving. Arch Neurol 50(7):753–756PubMedCrossRefGoogle Scholar
  83. 83.
    Kim RC, Smith HR, Henbest ML, Choi BH (1984) Nonhemorrhagic venous infarction of the spinal cord. Ann Neurol 15(4):379–385. doi:10.1002/ana.410150413PubMedCrossRefGoogle Scholar
  84. 84.
    Sekhon LH, Fehlings MG (2001) Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine 26(24 Suppl):S2–S12PubMedCrossRefGoogle Scholar
  85. 85.
    Fehlings MG, Sekhon LH (2000) Cellular, ionic and biomolecular mechanisms of the injury process. In: Tator CH, Benzel EC (eds) Contemporary management of spinal cord injury: from impact to rehabilitation. American Association of Neurological Surgeons, New York, pp 33–50Google Scholar
  86. 86.
    Allen A (1911) Surgery of experimental lesion of spinal cord equivalent to crush injury of fracture dislocation of spinal column. A preliminary report. JAMA 57:878–880CrossRefGoogle Scholar
  87. 87.
    Allen A (1914) Remarks on the histopathological changes in the spinal cord due to impact an experimental study. J Nerv Ment Dis 31:141–147CrossRefGoogle Scholar
  88. 88.
    Demopoulos H, Flamm ES, Seligman M (1979) Membrane perturbations in central nervous system injury: theoretical basis for free radical damage and a review of the experimental data. In: Popp AJ (ed) Neural trauma. Raven Press, New York, pp 63–78Google Scholar
  89. 89.
    Anderson DK, Hall ED (1993) Pathophysiology of spinal cord trauma. Ann Emerg Med 22(6):987–992PubMedCrossRefGoogle Scholar
  90. 90.
    Collins WF (1983) A review and update of experiment and clinical studies of spinal cord injury. Paraplegia 21(4):204–219. doi:10.1038/sc.1983.34PubMedCrossRefGoogle Scholar
  91. 91.
    Dusart I, Schwab ME (1994) Secondary cell death and the inflammatory reaction after dorsal hemisection of the rat spinal cord. Eur J Neurosci 6(5):712–724PubMedCrossRefGoogle Scholar
  92. 92.
    Tator CH (1991) Review of experimental spinal cord injury with emphasis on the local and systemic circulatory effects. Neurochirurgie 37(5):291–302PubMedGoogle Scholar
  93. 93.
    Young W, Koreh I (1986) Potassium and calcium changes in injured spinal cords. Brain Res 365(1):42–53PubMedCrossRefGoogle Scholar
  94. 94.
    Hall ED, Wolf DL (1987) Post-traumatic spinal cord ischemia: relationship to injury severity and physiological parameters. Cent Nerv Syst Trauma 4(1):15–25PubMedGoogle Scholar
  95. 95.
    Hall ED, Braughler JM (1982) Effects of intravenous methylprednisolone on spinal cord lipid peroxidation and Na+ + K+)-ATPase activity. Dose-response analysis during 1st hour after contusion injury in the cat. J Neurosurg 57(2):247–253. doi:10.3171/jns.1982.57.2.0247PubMedCrossRefGoogle Scholar
  96. 96.
    Fehlings MG, Tator CH, Linden RD (1989) The effect of nimodipine and dextran on axonal function and blood flow following experimental spinal cord injury. J Neurosurg 71(3):403–416. doi:10.3171/jns.1989.71.3.0403PubMedCrossRefGoogle Scholar
  97. 97.
    Tator CH, Fehlings MG (1991) Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 75(1):15–26. doi:10.3171/jns.1991.75.1.0015PubMedCrossRefGoogle Scholar
  98. 98.
    Senter HJ, Venes JL (1979) Loss of autoregulation and posttraumatic ischemia following experimental spinal cord trauma. J Neurosurg 50(2):198–206. doi:10.3171/jns.1979.50.2.0198PubMedCrossRefGoogle Scholar
  99. 99.
    Wolman L (1965) The disturbance of circulation in traumatic paraplegia in acute and late stages: a pathological study. Paraplegia 2:213–226. doi:10.1038/sc.1964.39PubMedCrossRefGoogle Scholar
  100. 100.
    Sandler AN, Tator CH (1976) Regional spinal cord blood flow in primates. J Neurosurg 45(6):647–659. doi:10.3171/jns.1976.45.6.0647PubMedCrossRefGoogle Scholar
  101. 101.
    Blisard KS, Follis F, Wong R, Miller KB, Wernly JA, Scremin OU (1995) Degeneration of axons in the corticospinal tract secondary to spinal cord ischemia in rats. Paraplegia 33(3):136–140. doi:10.1038/sc.1995.30PubMedCrossRefGoogle Scholar
  102. 102.
    Suh T, Alexander L (1939) Vascular system of the human spinal cord. Arch Neurol Psychiatry 1939(41):660–676Google Scholar
  103. 103.
    Grassner L, Klausner F, Wagner M et al (2014) Acute and chronic evolution of MRI findings in a case of posterior spinal cord ischemia. Spinal Cord 52:S23–S24. doi:10.1038/sc.2013.165PubMedCrossRefGoogle Scholar
  104. 104.
    Fried LC, Goodkin R (1971) Microangiographic observations of the experimentally traumatized spinal cord. J Neurosurg 35(6):709–714. doi:10.3171/jns.1971.35.6.0709PubMedCrossRefGoogle Scholar
  105. 105.
    Dohrmann GJ, Wick KM (1973) Intramedullary blood flow patterns in transitory traumatic paraplegia. Surg Neurol 1(4):209–215PubMedGoogle Scholar
  106. 106.
    Assenmacher DR, Ducker TB (1971) Experimental traumatic paraplegia. The vascular and pathological changes seen in reversible and irreversible spinal-cord lesions. J Bone Joint Surg Am 53(4):671–680PubMedGoogle Scholar
  107. 107.
    Griffiths IR, Miller R (1974) Vascular permeability to protein and vasogenic oedema in experimental concussive injuries to the canine spinal cord. J Neurol Sci 22(3):291–304PubMedCrossRefGoogle Scholar
  108. 108.
    Hsu CY, Hogan EL, Gadsden RH Sr, Spicer KM, Shi MP, Cox RD (1985) Vascular permeability in experimental spinal cord injury. J Neurol Sci 70(3):275–282PubMedCrossRefGoogle Scholar
  109. 109.
    Stewart WB, Wagner FC (1979) Vascular permeability changes in the contused feline spinal cord. Brain Res 169(1):163–167PubMedCrossRefGoogle Scholar
  110. 110.
    Young W, Flamm ES (1982) Effect of high-dose corticosteroid therapy on blood flow, evoked potentials, and extracellular calcium in experimental spinal injury. J Neurosurg 57(5):667–673. doi:10.3171/jns.1982.57.5.0667PubMedCrossRefGoogle Scholar
  111. 111.
    Young W, DeCrescito V, Tomasula JJ, Ho V (1980) The role of the sympathetic nervous system in pressor responses induced by spinal injury. J Neurosurg 52(4):473–481. doi:10.3171/jns.1980.52.4.0473PubMedCrossRefGoogle Scholar
  112. 112.
    Atkinson PP, Atkinson JL (1996) Spinal shock. Mayo Clin Proc 71(4):384–389. doi:10.1016/S0025-6196(11)64067-6PubMedCrossRefGoogle Scholar
  113. 113.
    Henderson CE (1996) Programmed cell death in the developing nervous system. Neuron 17(4):579–585PubMedCrossRefGoogle Scholar
  114. 114.
    Namura S, Zhu J, Fink K et al (1998) Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J Neurosci 18(10):3659–3668PubMedGoogle Scholar
  115. 115.
    Hockenbery D (1995) Defining apoptosis. Am J Pathol 146(1):16–19PubMedCentralPubMedGoogle Scholar
  116. 116.
    Crowe MJ, Bresnahan JC, Shuman SL, Masters JN, Beattie MS (1997) Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nat Med 3(1):73–76PubMedCrossRefGoogle Scholar
  117. 117.
    Emery E, Aldana P, Bunge MB et al (1998) Apoptosis after traumatic human spinal cord injury. J Neurosurg 89(6):911–920. doi:10.3171/jns.1998.89.6.0911PubMedCrossRefGoogle Scholar
  118. 118.
    Li GL, Brodin G, Farooque M et al (1996) Apoptosis and expression of Bcl-2 after compression trauma to rat spinal cord. J Neuropathol Exp Neurol 55(3):280–289PubMedCrossRefGoogle Scholar
  119. 119.
    Tator CH, Koyanagi I (1997) Vascular mechanisms in the pathophysiology of human spinal cord injury. J Neurosurg 86(3):483–492. doi:10.3171/jns.1997.86.3.0483PubMedCrossRefGoogle Scholar
  120. 120.
    Agrawal SK, Fehlings MG (1996) Mechanisms of secondary injury to spinal cord axons in vitro: role of Na+, Na(+)-K(+)-ATPase, the Na(+)-H+ exchanger, and the Na(+)-Ca2+ exchanger. J Neurosci 16(2):545–552PubMedGoogle Scholar
  121. 121.
    Osterholm JL, Mathews GJ (1972) Altered norepinephrine metabolism, following experimental spinal cord injury. 2. Protection against traumatic spinal cord hemorrhagic necrosis by norepinephrine synthesis blockade with alpha methyl tyrosine. J Neurosurg 36(4):395–401. doi:10.3171/jns.1972.36.4.0395PubMedCrossRefGoogle Scholar
  122. 122.
    Agrawal SK, Fehlings MG (1997) Role of NMDA and non-NMDA ionotropic glutamate receptors in traumatic spinal cord axonal injury. J Neurosci 17(3):1055–1063PubMedGoogle Scholar
  123. 123.
    Faden AI, Simon RP (1988) A potential role for excitotoxins in the pathophysiology of spinal cord injury. Ann Neurol 23(6):623–626. doi:10.1002/ana.410230618PubMedCrossRefGoogle Scholar
  124. 124.
    Demopoulos HB, Flamm ES, Pietronigro DD, Seligman ML (1980) The free radical pathology and the microcirculation in the major central nervous system disorders. Acta Physiol Scand Suppl 492:91–119PubMedGoogle Scholar
  125. 125.
    Hall ED, Yonkers PA, Horan KL, Braughler JM (1989) Correlation between attenuation of posttraumatic spinal cord ischemia and preservation of tissue vitamin E by the 21-aminosteroid U74006F: evidence for an in vivo antioxidant mechanism. J Neurotrauma 6(3):169–176PubMedCrossRefGoogle Scholar
  126. 126.
    Hung TK, Albin MS, Brown TD, Bunegin L, Albin R, Jannetta PJ (1975) Biomechanical responses to open experimental spinal cord injury. Surg Neurol 4(2):271–276PubMedGoogle Scholar
  127. 127.
    Faden AI, Jacobs TP, Holaday JW (1982) Comparison of early and late naloxone treatment in experimental spinal injury. Neurology 32(6):677–681PubMedCrossRefGoogle Scholar
  128. 128.
    Faden AI, Jacobs TP, Smith MT (1984) Evaluation of the calcium channel antagonist nimodipine in experimental spinal cord ischemia. J Neurosurg 60(4):796–799. doi:10.3171/jns.1984.60.4.0796PubMedCrossRefGoogle Scholar
  129. 129.
    Wagner FC Jr, Stewart WB (1981) Effect of trauma dose on spinal cord edema. J Neurosurg 54(6):802–806. doi:10.3171/jns.1981.54.6.0802PubMedCrossRefGoogle Scholar
  130. 130.
    Anderson DK, Means ED, Waters TR, Spears CJ (1980) Spinal cord energy metabolism following compression trauma to the feline spinal cord. J Neurosurg 53(3):375–380. doi:10.3171/jns.1980.53.3.0375PubMedCrossRefGoogle Scholar
  131. 131.
    Casha S, Yu WR, Fehlings MG (2001) Oligodendroglial apoptosis occurs along degenerating axons and is associated with FAS and p75 expression following spinal cord injury in the rat. Neuroscience 103(1):203–218PubMedCrossRefGoogle Scholar
  132. 132.
    De la Torre JC (1981) Spinal cord injury. Review of basic and applied research. Spine 6(4):315–335PubMedCrossRefGoogle Scholar
  133. 133.
    Lou J, Lenke LG, Ludwig FJ, O’Brien MF (1998) Apoptosis as a mechanism of neuronal cell death following acute experimental spinal cord injury. Spinal Cord 36(10):683–690PubMedCrossRefGoogle Scholar
  134. 134.
    Masson C, Pruvo JP, Meder JF et al (2004) Spinal cord infarction: clinical and magnetic resonance imaging findings and short term outcome. J Neurol Neurosurg Psychiatry 75(10):1431–1435. doi:10.1136/jnnp.2003.031724PubMedCentralPubMedCrossRefGoogle Scholar
  135. 135.
    Geldmacher D (2012) Vascular diseases of the nervous system: spinal cord vascular disease. In: Daroff RB, Bradley WG (eds) Bradley’s neurology in clinical practice, 6th edn. Saunders/Elsevier, Philadelphia, pp 1096–1099Google Scholar
  136. 136.
    Cheng M-Y, Lyu R-K, Chang Y-J et al (2008) Spinal cord infarction in Chinese patients. Clinical features, risk factors, imaging and prognosis. Cerebrovasc Dis 26(5):502–508. doi:10.1159/000155988PubMedCrossRefGoogle Scholar
  137. 137.
    Maynard FM Jr, Bracken MB, Creasey G et al (1997) International standards for neurological and functional classification of spinal cord injury. American Spinal Injury Association. Spinal Cord 35(5):266–274PubMedCrossRefGoogle Scholar
  138. 138.
    Misulis K (2012) Hemiplegia and monoplegia. In: Daroff RB, Mazziotta JC (eds) Bradley’s neurology in clinical practice, 6th edn. Saunders/Elsevier, Philadelphia, p 277Google Scholar
  139. 139.
    Dobkin B, Havton L (2012) Paraplegia and spinal cord syndromes. In: Bradley’s neurology in clinical practice, 6th edn. Saunders/Elsevier, Philadelphia, pp 286–289CrossRefGoogle Scholar
  140. 140.
    Vertinsky AT, Krasnokutsky MV, Augustin M, Bammer R (2007) Cutting-edge imaging of the spine. Neuroimaging Clin N Am 17(1):117–136. doi:10.1016/j.nic.2007.01.003PubMedCrossRefGoogle Scholar
  141. 141.
    Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM (1990) The NMR phased array. Magn Reson Med 16(2):192–225PubMedCrossRefGoogle Scholar
  142. 142.
    Griswold MA, Jakob PM, Heidemann RM et al (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47(6):1202–1210. doi:10.1002/mrm.10171PubMedCrossRefGoogle Scholar
  143. 143.
    Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42(5):952–962PubMedCrossRefGoogle Scholar
  144. 144.
    Thurnher MM, Bammer R (2006) Diffusion-weighted MR imaging (DWI) in spinal cord ischemia. Neuroradiology 48(11):795–801. doi:10.1007/s00234-006-0130-zPubMedCrossRefGoogle Scholar
  145. 145.
    Marcel C, Kremer S, Jeantroux J, Blanc F, Dietemann J-L, De Sèze J (2010) Diffusion-weighted imaging in noncompressive myelopathies: a 33-patient prospective study. J Neurol 257(9):1438–1445. doi:10.1007/s00415-010-5538-zPubMedCrossRefGoogle Scholar
  146. 146.
    Novy J, Carruzzo A, Maeder P, Bogousslavsky J (2006) Spinal cord ischemia: clinical and imaging patterns, pathogenesis, and outcomes in 27 patients. Arch Neurol 63(8):1113–1120. doi:10.1001/archneur.63.8.1113PubMedCrossRefGoogle Scholar
  147. 147.
    Salvador de la Barrera S, Barca-Buyo A, Montoto-Marqués A, Ferreiro-Velasco ME, Cidoncha-Dans M, Rodriguez-Sotillo A (2001) Spinal cord infarction: prognosis and recovery in a series of 36 patients. Spinal Cord 39(10):520–525. doi:10.1038/ Scholar
  148. 148.
    Hajnal JV, Doran M, Hall AS et al (1991) MR imaging of anisotropically restricted diffusion of water in the nervous system: technical, anatomic, and pathologic considerations. J Comput Assist Tomogr 15(1):1–18PubMedCrossRefGoogle Scholar
  149. 149.
    Stepper F, Lövblad KO (2001) Anterior spinal artery stroke demonstrated by echo-planar DWI. Eur Radiol 11(12):2607–2610. doi:10.1007/s003300100926PubMedCrossRefGoogle Scholar
  150. 150.
    Schlaug G, Siewert B, Benfield A, Edelman RR, Warach S (1997) Time course of the apparent diffusion coefficient (ADC) abnormality in human stroke. Neurology 49(1):113–119PubMedCrossRefGoogle Scholar
  151. 151.
    Nogueira RG, Ferreira R, Grant PE et al (2012) Restricted diffusion in spinal cord infarction demonstrated by magnetic resonance line scan diffusion imaging. Stroke 43(2):532–535. doi:10.1161/STROKEAHA.111.624023PubMedCrossRefGoogle Scholar
  152. 152.
    Küker W, Weller M, Klose U, Krapf H, Dichgans J, Nägele T (2004) Diffusion-weighted MRI of spinal cord infarction–high resolution imaging and time course of diffusion abnormality. J Neurol 251(7):818–824. doi:10.1007/s00415-004-0434-zPubMedCrossRefGoogle Scholar
  153. 153.
    Bammer R, Fazekas F, Augustin M et al (2000) Diffusion-weighted MR imaging of the spinal cord. AJNR Am J Neuroradiol 21(3):587–591PubMedGoogle Scholar
  154. 154.
    Gass A, Back T, Behrens S, Maras A (2000) MRI of spinal cord infarction. Neurology 54(11):2195PubMedCrossRefGoogle Scholar
  155. 155.
    Zhang J, Huan Y, Qian Y, Sun L, Ge Y (2005) Multishot diffusion-weighted imaging features in spinal cord infarction. J Spinal Disord Tech 18(3):277–282PubMedGoogle Scholar
  156. 156.
    Fortuna A, Ferrante L, Acqui M, Trillò G (1995) Spinal cord ischemia diagnosed by MRI. Case report and review of the literature. J Neuroradiol 22(2):115–122PubMedGoogle Scholar
  157. 157.
    Weidauer S, Nichtweiss M, Lanfermann H, Zanella FE (2002) Spinal cord infarction: MR imaging and clinical features in 16 cases. Neuroradiology 44(10):851–857. doi:10.1007/s00234-002-0828-5PubMedCrossRefGoogle Scholar
  158. 158.
    Beslow LA, Ichord RN, Zimmerman RA, Smith SE, Licht DJ (2008) Role of diffusion MRI in diagnosis of spinal cord infarction in children. Neuropediatrics 39(3):188–191. doi:10.1055/s-0028-1093335PubMedCrossRefGoogle Scholar
  159. 159.
    Mull M, Thron A (2006) Spinal infarcts. In: Magnetic resonance imaging in ischemic stroke. Springer, Berlin, pp 251–267CrossRefGoogle Scholar
  160. 160.
    Faig J, Busse O, Salbeck R (1998) Vertebral body infarction as a confirmatory sign of spinal cord ischemic stroke: report of three cases and review of the literature. Stroke 29(1):239–243PubMedCrossRefGoogle Scholar
  161. 161.
    Mikulis DJ, Ogilvy CS, McKee A, Davis KR, Ojeman RG (1992) Spinal cord infarction and fibrocartilagenous emboli. AJNR Am J Neuroradiol 13(1):155–160PubMedGoogle Scholar
  162. 162.
    Yuh WT, Marsh EE, Wang AK et al (1992) MR imaging of spinal cord and vertebral body infarction. AJNR Am J Neuroradiol 13(1):145–154. Available at Accessed 18 Mar 2014PubMedGoogle Scholar
  163. 163.
    Haddad MC, Aabed al-Thagafi MY, Djurberg H (1996) MRI of spinal cord and vertebral body infarction in the anterior spinal artery syndrome. Neuroradiology 38(2):161–162PubMedCrossRefGoogle Scholar
  164. 164.
    Cheng M-Y, Lyu R-K, Chang Y-J et al (2009) Concomitant spinal cord and vertebral body infarction is highly associated with aortic pathology: a clinical and magnetic resonance imaging study. J Neurol 256(9):1418–1426. doi:10.1007/s00415-009-5126-2PubMedCrossRefGoogle Scholar
  165. 165.
    Hurst WR (2009) Vascular disorders of the spine and spinal cord. In: Atlas SW (ed) Magnetic resonance imaging of the brain and spine. Wolters Kluwer Health/Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  166. 166.
    Masson C, Leys D, Meder JF, Dousset V, Pruvo JP (2004) Spinal cord ischemia. J Neuroradiol 31(1):35–46PubMedCrossRefGoogle Scholar
  167. 167.
    Chang Y, Jung T-D, Yoo DS, Hyun JK (2010) Diffusion tensor imaging and fiber tractography of patients with cervical spinal cord injury. J Neurotrauma 27(11):2033–2040. doi:10.1089/neu.2009.1265PubMedCrossRefGoogle Scholar
  168. 168.
    Rajasekaran S, Kanna RM, Shetty AP, Ilayaraja V (2012) Efficacy of diffusion tensor anisotropy indices and tractography in assessing the extent of severity of spinal cord injury: an in vitro analytical study in calf spinal cords. Spine J 12(12):1147–1153. doi:10.1016/j.spinee.2012.10.032PubMedCrossRefGoogle Scholar
  169. 169.
    Luo C-B, Chang F-C, Teng MM-H, Chen S-S, Lirng J-F, Chang C-Y (2003) Magnetic resonance imaging as a guide in the diagnosis and follow-up of spinal cord infarction. J Chin Med Assoc 66(2):89–95PubMedGoogle Scholar
  170. 170.
    Ikuta F, Zimmerman HM (1976) Distribution of plaques in seventy autopsy cases of multiple sclerosis in the United States. Neurology 26(6 PT 2):26–28PubMedCrossRefGoogle Scholar
  171. 171.
    Lycklama G, Thompson A, Filippi M et al (2003) Spinal-cord MRI in multiple sclerosis. Lancet Neurol 2(9):555–562PubMedCrossRefGoogle Scholar
  172. 172.
    Thurnher MM, Cartes-Zumelzu F, Mueller-Mang C (2007) Demyelinating and infectious diseases of the spinal cord. Neuroimaging Clin N Am 17(1):37–55. doi:10.1016/j.nic.2006.12.002PubMedCrossRefGoogle Scholar
  173. 173.
    Bachmann S, Kesselring J (1998) Multiple sclerosis and infectious childhood diseases. Neuroepidemiology 17(3):154–160PubMedCrossRefGoogle Scholar
  174. 174.
    Bot JCJ, Blezer ELA, Kamphorst W et al (2004) The spinal cord in multiple sclerosis: relationship of high-spatial-resolution quantitative MR imaging findings to histopathologic results. Radiology 233(2):531–540. doi:10.1148/radiol.2332031572PubMedCrossRefGoogle Scholar
  175. 175.
    Evangelou N, DeLuca GC, Owens T, Esiri MM (2005) Pathological study of spinal cord atrophy in multiple sclerosis suggests limited role of local lesions. Brain 128(Pt 1):29–34. doi:10.1093/brain/awh323PubMedCrossRefGoogle Scholar
  176. 176.
    Tench CR, Morgan PS, Jaspan T, Auer DP, Constantinescu CS (2005) Spinal cord imaging in multiple sclerosis. J Neuroimaging 15(4 Suppl):94S–102S. doi:10.1177/1051228405283292PubMedCrossRefGoogle Scholar
  177. 177.
    Bot JCJ, Barkhof F, Lycklama à Nijeholt G et al (2002) Differentiation of multiple sclerosis from other inflammatory disorders and cerebrovascular disease: value of spinal MR imaging. Radiology 223(1):46–56. doi:10.1148/radiol.2231010707PubMedCrossRefGoogle Scholar
  178. 178.
    Paty DW, Oger JJ, Kastrukoff LF et al (1988) MRI in the diagnosis of MS: a prospective study with comparison of clinical evaluation, evoked potentials, oligoclonal banding, and CT. Neurology 38(2):180–185PubMedCrossRefGoogle Scholar
  179. 179.
    Fazekas F, Offenbacher H, Fuchs S et al (1988) Criteria for an increased specificity of MRI interpretation in elderly subjects with suspected multiple sclerosis. Neurology 38(12):1822–1825PubMedCrossRefGoogle Scholar
  180. 180.
    Barkhof F, Filippi M, Miller DH et al (1997) Comparison of MRI criteria at first presentation to predict conversion to clinically definite multiple sclerosis. Brain 120(Pt 11):2059–2069PubMedCrossRefGoogle Scholar
  181. 181.
    Kerr DA, Ayetey H (2002) Immunopathogenesis of acute transverse myelitis. Curr Opin Neurol 15(3):339–347PubMedCrossRefGoogle Scholar
  182. 182.
    Choi KH, Lee KS, Chung SO et al (1996) Idiopathic transverse myelitis: MR characteristics. AJNR Am J Neuroradiol 17(6):1151–1160PubMedGoogle Scholar
  183. 183.
    Larner AJ, Farmer SF (2000) Myelopathy following influenza vaccination in inflammatory CNS disorder treated with chronic immunosuppression. Eur J Neurol 7(6):731–733PubMedCrossRefGoogle Scholar
  184. 184.
    Bakshi R, Mazziotta JC (1996) Acute transverse myelitis after influenza vaccination: magnetic resonance imaging findings. J Neuroimaging 6(4):248–250PubMedGoogle Scholar
  185. 185.
    De Seze J, Lanctin C, Lebrun C et al (2005) Idiopathic acute transverse myelitis: application of the recent diagnostic criteria. Neurology 65(12):1950–1953. doi:10.1212/01.wnl.0000188896.48308.26PubMedCrossRefGoogle Scholar
  186. 186.
    Transverse Myelitis Consortium Working Group (2002) Proposed diagnostic criteria and nosology of acute transverse myelitis. Neurology 59(4):499–505CrossRefGoogle Scholar
  187. 187.
    Scotti G, Gerevini S (2001) Diagnosis and differential diagnosis of acute transverse myelopathy. The role of neuroradiological investigations and review of the literature. Neurol Sci 22(Suppl 2):S69–S73PubMedCrossRefGoogle Scholar
  188. 188.
    Nance JR, Golomb MR (2007) Ischemic spinal cord infarction in children without vertebral fracture. Pediatr Neurol 36(4):209–216. doi:10.1016/j.pediatrneurol.2007.01.006PubMedCentralPubMedCrossRefGoogle Scholar
  189. 189.
    Alper G (2012) Acute disseminated encephalomyelitis. J Child Neurol 27(11):1408–1425. doi:10.1177/0883073812455104PubMedCrossRefGoogle Scholar
  190. 190.
    Singh S, Prabhakar S, Korah IP, Warade SS, Alexander M (2000) Acute disseminated encephalomyelitis and multiple sclerosis: magnetic resonance imaging differentiation. Australas Radiol 44(4):404–411PubMedCrossRefGoogle Scholar
  191. 191.
    Khong P-L, Ho H-K, Cheng P-W, Wong VCN, Goh W, Chan F-L (2002) Childhood acute disseminated encephalomyelitis: the role of brain and spinal cord MRI. Pediatr Radiol 32(1):59–66. doi:10.1007/s00247-001-0582-6PubMedCrossRefGoogle Scholar
  192. 192.
    Callen DJA, Shroff MM, Branson HM et al (2009) Role of MRI in the differentiation of ADEM from MS in children. Neurology 72(11):968–973. doi:10.1212/01.wnl.0000338630.20412.45PubMedCrossRefGoogle Scholar
  193. 193.
    Baum PA, Barkovich AJ, Koch TK, Berg BO (1994) Deep gray matter involvement in children with acute disseminated encephalomyelitis. AJNR Am J Neuroradiol 15(7):1275–1283PubMedGoogle Scholar
  194. 194.
    Pittock SJ, Lucchinetti CF (2006) Inflammatory transverse myelitis: evolving concepts. Curr Opin Neurol 19(4):362–368. doi:10.1097/01.wco.0000236615.59215.d3PubMedCrossRefGoogle Scholar
  195. 195.
    Apak RA, Köse G, Anlar B, Turanli G, Topaloğlu H, Ozdirim E (1999) Acute disseminated encephalomyelitis in childhood: report of 10 cases. J Child Neurol 14(3):198–201PubMedCrossRefGoogle Scholar
  196. 196.
    Thron A, Caplan L (2003) Vascular malformations and interventional neuroradiology of the spinal cord. In: Neurological disorderscourse and treatment. Academic, Amsterdam, pp 517–528CrossRefGoogle Scholar
  197. 197.
    Koenig E, Thron A, Schrader V, Dichgans J (1989) Spinal arteriovenous malformations and fistulae: clinical, neuroradiological and neurophysiological findings. J Neurol 236(5):260–266PubMedCrossRefGoogle Scholar
  198. 198.
    Hurst RW, Kenyon LC, Lavi E, Raps EC, Marcotte P (1995) Spinal dural arteriovenous fistula: the pathology of venous hypertensive myelopathy. Neurology 45(7):1309–1313PubMedCrossRefGoogle Scholar
  199. 199.
    Criscuolo GR, Oldfield EH, Doppman JL (1989) Reversible acute and subacute myelopathy in patients with dural arteriovenous fistulas. Foix-Alajouanine syndrome reconsidered. J Neurosurg 70(3):354–359. doi:10.3171/jns.1989.70.3.0354PubMedCrossRefGoogle Scholar
  200. 200.
    De Marco JK, Dillon WP, Halback VV, Tsuruda JS (1990) Dural arteriovenous fistulas: evaluation with MR imaging. Radiology 175(1):193–199. doi:10.1148/radiology.175.1.2315480PubMedCrossRefGoogle Scholar
  201. 201.
    Hurst RW, Grossman RI (2000) Peripheral spinal cord hypointensity on T2-weighted MR images: a reliable imaging sign of venous hypertensive myelopathy. AJNR Am J Neuroradiol 21(4):781–786PubMedGoogle Scholar
  202. 202.
    Gomori JM, Grossman RI, Yu-Ip C, Asakura T (1987) NMR relaxation times of blood: dependence on field strength, oxidation state, and cell integrity. J Comput Assist Tomogr 11(4):684–690PubMedCrossRefGoogle Scholar
  203. 203.
    Krings T, Geibprasert S (2009) Spinal dural arteriovenous fistulas. AJNR Am J Neuroradiol 30(4):639–648. doi:10.3174/ajnr.A1485PubMedCrossRefGoogle Scholar
  204. 204.
    Weinzierl MR, Krings T, Korinth MC, Reinges MHT, Gilsbach JM (2004) MRI and intraoperative findings in cavernous haemangiomas of the spinal cord. Neuroradiology 46(1):65–71. doi:10.1007/s00234-003-1072-3PubMedCrossRefGoogle Scholar
  205. 205.
    Balériaux DL (1999) Spinal cord tumors. Eur Radiol 9(7):1252–1258PubMedCrossRefGoogle Scholar
  206. 206.
    Lowe GM (2000) Magnetic resonance imaging of intramedullary spinal cord tumors. J Neurooncol 47(3):195–210PubMedCrossRefGoogle Scholar
  207. 207.
    Chu BC, Terae S, Hida K, Furukawa M, Abe S, Miyasaka K (2001) MR findings in spinal hemangioblastoma: correlation with symptoms and with angiographic and surgical findings. AJNR Am J Neuroradiol 22(1):206–217PubMedGoogle Scholar
  208. 208.
    Wippold FJ 2nd, Smirniotopoulos JG, Moran CJ, Suojanen JN, Vollmer DG (1995) MR imaging of myxopapillary ependymoma: findings and value to determine extent of tumor and its relation to intraspinal structures. AJR Am J Roentgenol 165(5):1263–1267. doi:10.2214/ajr.165.5.7572515PubMedCrossRefGoogle Scholar
  209. 209.
    Miyazawa N, Hida K, Iwasaki Y, Koyanagi I, Abe H (2000) MRI at 1.5 T of intramedullary ependymoma and classification of pattern of contrast enhancement. Neuroradiology 42(11):828–832PubMedCrossRefGoogle Scholar
  210. 210.
    Richard S, Campello C, Taillandier L, Parker F, Resche F (1998) Haemangioblastoma of the central nervous system in von Hippel-Lindau disease. French VHL Study Group. J Intern Med 243(6):547–553PubMedCrossRefGoogle Scholar
  211. 211.
    Bou-Haidar P, Peduto AJ, Karunaratne N (2009) Differential diagnosis of T2 hyperintense spinal cord lesions: part B. J Med Imaging Radiat Oncol 53(2):152–159. doi:10.1111/j.1754-9485.2009.02067.xPubMedCrossRefGoogle Scholar
  212. 212.
    Chason JL, Walker FB, Landers JW (1963) Metastatic carcinoma in the central nervous system and dorsal root ganglia. A prospective autopsy study. Cancer 16:781–787PubMedCrossRefGoogle Scholar
  213. 213.
    Costigan DA, Winkelman MD (1985) Intramedullary spinal cord metastasis. A clinicopathological study of 13 cases. J Neurosurg 62(2):227–233. doi:10.3171/jns.1985.62.2.0227PubMedCrossRefGoogle Scholar
  214. 214.
    Kalayci M, Cağavi F, Gül S, Yenidünya S, Açikgöz B (2004) Intramedullary spinal cord metastases: diagnosis and treatment – an illustrated review. Acta Neurochir (Wien) 146(12):1347–1354. doi:10.1007/s00701-004-0386-1; discussion 1354CrossRefGoogle Scholar
  215. 215.
    Watanabe M, Nomura T, Toh E, Sato M, Mochida J (2006) Intramedullary spinal cord metastasis: a clinical and imaging study of seven patients. J Spinal Disord Tech 19(1):43–47. doi:10.1097/01.bsd.0000188661.08342.2aPubMedCrossRefGoogle Scholar
  216. 216.
    Mut M, Schiff D, Shaffrey ME (2005) Metastasis to nervous system: spinal epidural and intramedullary metastases. J Neurooncol 75(1):43–56. doi:10.1007/s11060-004-8097-2PubMedCrossRefGoogle Scholar
  217. 217.
    Haq A, Wasay M (2006) Magnetic resonance imaging in poliomyelitis. Arch Neurol 63(5):778. doi:10.1001/archneur.63.5.778PubMedCrossRefGoogle Scholar
  218. 218.
    Ferraz-Filho JRL, dos Santos TU, de Oliveira EP, Souza AS (2010) MRI findings in an infant with vaccine-associated paralytic poliomyelitis. Pediatr Radiol 40(Suppl 1):S138–S140. doi:10.1007/s00247-010-1650-6PubMedCrossRefGoogle Scholar
  219. 219.
    Hui AC, Wong KS, Fu M, Kay R (2000) Ischaemic myelopathy presenting as Guillain-Barré syndrome. Int J Clin Pract 54(5):340–341PubMedGoogle Scholar
  220. 220.
    Hemmer B, Glocker FX, Schumacher M, Deuschl G, Lücking CH (1998) Subacute combined degeneration: clinical, electrophysiological, and magnetic resonance imaging findings. J Neurol Neurosurg Psychiatry 65(6):822–827PubMedCentralPubMedCrossRefGoogle Scholar
  221. 221.
    Thurnher MM, Post MJ, Jinkins JR (2000) MRI of infections and neoplasms of the spine and spinal cord in 55 patients with AIDS. Neuroradiology 42(8):551–563PubMedCrossRefGoogle Scholar
  222. 222.
    McArthur JC, Brew BJ, Nath A (2005) Neurological complications of HIV infection. Lancet Neurol 4(9):543–555. doi:10.1016/S1474-4422(05)70165-4PubMedCrossRefGoogle Scholar
  223. 223.
    Fitzgerald RH Jr, Marks RD Jr, Wallace KM (1982) Chronic radiation myelitis. Radiology 144(3):609–612. doi:10.1148/radiology.144.3.6808557PubMedCrossRefGoogle Scholar
  224. 224.
    SreeHarsha CK, Rajasekaran S, Dhanasekararaja P (2006) Spontaneous complete recovery of paraplegia caused by epidural hematoma complicating epidural anesthesia: a case report and review of literature. Spinal Cord 44(8):514–517. doi:10.1038/ Scholar
  225. 225.
    Gobin YP (1997) Classification and endovascular treatment of spinal cord arteriovenous malformations and fistulas. J Stroke Cerebrovasc Dis 6(4):282–286PubMedCrossRefGoogle Scholar
  226. 226.
    Yamada N, Okita Y, Minatoya K et al (2000) Preoperative demonstration of the Adamkiewicz artery by magnetic resonance angiography in patients with descending or thoracoabdominal aortic aneurysms. Eur J Cardiothorac Surg 18(1):104–111. doi:10.1016/S1010-7940(00)00412-7PubMedCrossRefGoogle Scholar
  227. 227.
    Shi HB, Suh DC, Lee HK et al (1999) Preoperative transarterial embolization of spinal tumor: embolization techniques and results. AJNR Am J Neuroradiol 20(10):2009–2015. Available at Accessed 10 Mar 2014PubMedGoogle Scholar
  228. 228.
    Backes WH, Nijenhuis RJ (2008) Advances in spinal cord MR angiography. AJNR Am J Neuroradiol 29(4):619–631. doi:10.3174/ajnr.A0910PubMedCrossRefGoogle Scholar
  229. 229.
    Fereshetian A, Kadir S, Kaufman SL et al (1989) Digital subtraction spinal cord angiography in patients undergoing thoracic aneurysm surgery. Cardiovasc Intervent Radiol 12(1):7–9PubMedCrossRefGoogle Scholar
  230. 230.
    Kieffer E, Richard T, Chiras J, Godet G, Cormier E (1989) Preoperative spinal cord arteriography in aneurysmal disease of the descending thoracic and thoracoabdominal aorta: preliminary results in 45 patients. Ann Vasc Surg 3(1):34–46PubMedCrossRefGoogle Scholar
  231. 231.
    Kieffer E, Fukui S, Chiras J, Koskas F, Bahnini A, Cormier E (2002) Spinal cord arteriography: a safe adjunct before descending thoracic or thoracoabdominal aortic aneurysmectomy. J Vasc Surg 35(2):262–268PubMedCrossRefGoogle Scholar
  232. 232.
    Williams GM, Roseborough GS, Webb TH, Perler BA, Krosnick T (2004) Preoperative selective intercostal angiography in patients undergoing thoracoabdominal aneurysm repair. J Vasc Surg 39(2):314–321. doi:10.1016/j.jvs.2003.09.039PubMedCrossRefGoogle Scholar
  233. 233.
    Prestigiacomo CJ, Niimi Y, Setton A, Berenstein A (2003) Three-dimensional rotational spinal angiography in the evaluation and treatment of vascular malformations. AJNR Am J Neuroradiol 24(7):1429–1435. Available at Accessed 8 Mar 2014PubMedGoogle Scholar
  234. 234.
    Ropper AE, Lin N, Gross BA et al (2012) Rotational angiography for diagnosis and surgical planning in the management of spinal vascular lesions. Neurosurg Focus 32(5):E6. doi:10.3171/2012.1.FOCUS11254PubMedCrossRefGoogle Scholar
  235. 235.
    Matsumoto M, Kodama N, Endo Y et al (2007) Dynamic 3D-CT angiography. AJNR Am J Neuroradiol 28(2):299–304PubMedGoogle Scholar
  236. 236.
    Takase K, Sawamura Y, Igarashi K et al (2002) Demonstration of the artery of Adamkiewicz at multi- detector row helical CT. Radiology 223(1):39–45. doi:10.1148/radiol.2231010513PubMedCrossRefGoogle Scholar
  237. 237.
    Lai P-H, Pan H-B, Yang C-F et al (2005) Multi-detector row computed tomography angiography in diagnosing spinal dural arteriovenous fistula: initial experience. Stroke 36(7):1562–1564. doi:10.1161/01.STR.0000170048.94718.07PubMedCrossRefGoogle Scholar
  238. 238.
    Lai PH, Weng MJ, Lee KW, Pan HB (2006) Multidetector CT angiography in diagnosing type I and type IVA spinal vascular malformations. AJNR Am J Neuroradiol 27(4):813–817PubMedGoogle Scholar
  239. 239.
    Si-jia G, Meng-wei Z, Xi-ping L et al (2009) The clinical application studies of CT spinal angiography with 64-detector row spiral CT in diagnosing spinal vascular malformations. Eur J Radiol 71(1):22–28. doi:10.1016/j.ejrad.2008.04.005PubMedCrossRefGoogle Scholar
  240. 240.
    Farb RI, Kim JK, Willinsky RA et al (2002) Spinal dural arteriovenous fistula localization with a technique of first-pass gadolinium-enhanced MR angiography: initial experience. Radiology 222(3):843–850. doi:10.1148/radiol.2223010826PubMedCrossRefGoogle Scholar
  241. 241.
    Pattany PM, Saraf-Lavi E, Bowen BC (2003) MR angiography of the spine and spinal cord. Top Magn Reson Imaging 14(6):444–460PubMedCrossRefGoogle Scholar
  242. 242.
    Bowen BC, DePrima S, Pattany PM, Marcillo A, Madsen P, Quencer RM (1996) MR angiography of normal intradural vessels of the thoracolumbar spine. AJNR Am J Neuroradiol 17(3):483–494PubMedGoogle Scholar
  243. 243.
    Nijenhuis RJ, Jacobs MJ, Jaspers K et al (2007) Comparison of magnetic resonance with computed tomography angiography for preoperative localization of the Adamkiewicz artery in thoracoabdominal aortic aneurysm patients. J Vasc Surg 45(4):677–685. doi:10.1016/j.jvs.2006.11.046PubMedCrossRefGoogle Scholar
  244. 244.
    Jaspers K, Nijenhuis RJ, Backes WH (2007) Differentiation of spinal cord arteries and veins by time-resolved MR angiography. J Magn Reson Imaging 26(1):31–40. doi:10.1002/jmri.20940PubMedCrossRefGoogle Scholar
  245. 245.
    Ali S, Cashen TA, Carroll TJ et al (2007) Time-resolved spinal MR angiography: initial clinical experience in the evaluation of spinal arteriovenous shunts. AJNR Am J Neuroradiol 28(9):1806–1810. doi:10.3174/ajnr.A0639PubMedCrossRefGoogle Scholar
  246. 246.
    Saindane AM, Boddu SR, Tong FC, Dehkharghani S, Dion JE (2014) Contrast-enhanced time-resolved MRA for pre-angiographic evaluation of suspected spinal dural arterial venous fistulas. J Neurointerv Surg 7:135–140. doi:10.1136/neurintsurg-2013-010981PubMedCrossRefGoogle Scholar
  247. 247.
    Kaufmann TJ, Kallmes DF (2008) Diagnostic cerebral angiography: archaic and complication-prone or here to stay for another 80 years? AJR Am J Roentgenol 190(6):1435–1437. doi:10.2214/AJR.07.3522PubMedCrossRefGoogle Scholar
  248. 248.
    Mull M, Nijenhuis RJ, Backes WH, Krings T, Wilmink JT, Thron A (2007) Value and limitations of contrast-enhanced MR angiography in spinal arteriovenous malformations and dural arteriovenous fistulas. AJNR Am J Neuroradiol 28(7):1249–1258. doi:10.3174/ajnr.A0612PubMedCrossRefGoogle Scholar
  249. 249.
    Luetmer PH, Lane JI, Gilbertson JR, Bernstein MA, Huston J 3rd, Atkinson JLD (2005) Preangiographic evaluation of spinal dural arteriovenous fistulas with elliptic centric contrast-enhanced MR angiography and effect on radiation dose and volume of iodinated contrast material. AJNR Am J Neuroradiol 26(4):711–718PubMedGoogle Scholar
  250. 250.
    Eddleman CS, Jeong H, Cashen TA et al (2009) Advanced noninvasive imaging of spinal vascular malformations. Neurosurg Focus 26(1):E9. doi:10.3171/FOC.2009.26.1.E9PubMedCentralPubMedCrossRefGoogle Scholar
  251. 251.
    Di Chiro G, Wener L (1973) Angiography of the spinal cord. A review of contemporary techniques and applications. J Neurosurg 39(1):1–29. doi:10.3171/jns.1973.39.1.0001PubMedCrossRefGoogle Scholar
  252. 252.
    Kaufmann TJ, Huston J 3rd, Mandrekar JN, Schleck CD, Thielen KR, Kallmes DF (2007) Complications of diagnostic cerebral angiography: evaluation of 19,826 consecutive patients. Radiology 243(3):812–819. doi:10.1148/radiol.2433060536PubMedCrossRefGoogle Scholar
  253. 253.
    Chen J, Gailloud P (2011) Safety of spinal angiography: complication rate analysis in 302 diagnostic angiograms. Neurology 77(13):1235–1240. doi:10.1212/WNL.0b013e3182302068PubMedCrossRefGoogle Scholar
  254. 254.
    Restrepo L, Wityk RJ, Grega MA et al (2002) Diffusion- and perfusion-weighted magnetic resonance imaging of the brain before and after coronary artery bypass grafting surgery. Stroke 33(12):2909–2915. Available at Accessed 26 Apr 2012PubMedCrossRefGoogle Scholar
  255. 255.
    Baba H, Tomita K, Kawagishi T, Imura S (1993) Anterior spinal artery syndrome. Int Orthop 17(6):353–356PubMedGoogle Scholar
  256. 256.
    Jauch EC, Saver JL, Adams HP Jr et al (2013) Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 44(3):870–947. doi:10.1161/STR.0b013e318284056aPubMedCrossRefGoogle Scholar
  257. 257.
    McGarvey ML, Cheung AT, Szeto W, Messe SR (2007) Management of neurologic complications of thoracic aortic surgery. J Clin Neurophysiol 24(4):336–343. doi:10.1097/WNP.0b013e31811ec0b0PubMedGoogle Scholar
  258. 258.
    Cheung AT, Weiss SJ, McGarvey ML et al (2002) Interventions for reversing delayed-onset postoperative paraplegia after thoracic aortic reconstruction. Ann Thorac Surg 74(2):413–419; discussion 420-421PubMedCrossRefGoogle Scholar
  259. 259.
    Wallace MC, Tator CH, Frazee P (1986) Relationship between posttraumatic ischemia and hemorrhage in the injured rat spinal cord as shown by colloidal carbon angiography. Neurosurgery 18(4):433–439PubMedCrossRefGoogle Scholar
  260. 260.
    Kirsch M, Berg-Dammer E, Musahl C, Bäzner H, Kühne D, Henkes H (2013) Endovascular management of spinal dural arteriovenous fistulas in 78 patients. Neuroradiology 55(3):337–343. doi:10.1007/s00234-013-1134-0PubMedCrossRefGoogle Scholar
  261. 261.
    Anderson DK, Means ED, Waters TR, Green ES (1982) Microvascular perfusion and metabolism in injured spinal cord after methylprednisolone treatment. J Neurosurg 56(1):106–113. doi:10.3171/jns.1982.56.1.0106PubMedCrossRefGoogle Scholar
  262. 262.
    Anderson DK, Saunders RD, Demediuk P et al (1985) Lipid hydrolysis and peroxidation in injured spinal cord: partial protection with methylprednisolone or vitamin E and selenium. Cent Nerv Syst Trauma 2(4):257–267PubMedGoogle Scholar
  263. 263.
    Hall ED, Braughler JM (1982) Glucocorticoid mechanisms in acute spinal cord injury: a review and therapeutic rationale. Surg Neurol 18(5):320–327PubMedCrossRefGoogle Scholar
  264. 264.
    Fehlings MG, Tator CH (1999) An evidence-based review of decompressive surgery in acute spinal cord injury: rationale, indications, and timing based on experimental and clinical studies. J Neurosurg 91(1 Suppl):1–11PubMedCrossRefGoogle Scholar
  265. 265.
    Fehlings MG, Perrin RG (2005) The role and timing of early decompression for cervical spinal cord injury: update with a review of recent clinical evidence. Injury 36(Suppl 2):B13–B26. doi:10.1016/j.injury.2005.06.011PubMedCrossRefGoogle Scholar
  266. 266.
    La Rosa G, Conti A, Cardali S, Cacciola F, Tomasello F (2004) Does early decompression improve neurological outcome of spinal cord injured patients? Appraisal of the literature using a meta-analytical approach. Spinal Cord 42(9):503–512. doi:10.1038/ Scholar
  267. 267.
    Fehlings MG, Vaccaro A, Wilson JR et al (2012) Early versus delayed decompression for traumatic cervical spinal cord injury: results of the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS). PLoS One 7(2):e32037. doi:10.1371/journal.pone.0032037PubMedCentralPubMedCrossRefGoogle Scholar
  268. 268.
    Van Middendorp JJ, Hosman AJF, Doi SAR (2013) The effects of the timing of spinal surgery after traumatic spinal cord injury: a systematic review and meta-analysis. J Neurotrauma 30(21):1781–1794. doi:10.1089/neu.2013.2932PubMedCrossRefGoogle Scholar
  269. 269.
    DeVivo MJ, Kartus PL, Stover SL, Rutt RD, Fine PR (1989) Cause of death for patients with spinal cord injuries. Arch Intern Med 149(8):1761–1766PubMedCrossRefGoogle Scholar
  270. 270.
    Young JS (1979) Spinal cord injury: associated general trauma and medical complications. Adv Neurol 22:255–260PubMedGoogle Scholar
  271. 271.
    Patsalides A, Knopman J, Santillan A, Tsiouris AJ, Riina H, Gobin YP (2011) Endovascular treatment of spinal arteriovenous lesions: beyond the dural fistula. AJNR Am J Neuroradiol 32(5):798–808. doi:10.3174/ajnr.A2190PubMedCrossRefGoogle Scholar
  272. 272.
    Da Costa L, Dehdashti AR, terBrugge KG (2009) Spinal cord vascular shunts: spinal cord vascular malformations and dural arteriovenous fistulas. Neurosurg Focus 26(1):E6. doi:10.3171/FOC.2009.26.1.E6PubMedCrossRefGoogle Scholar

Suggested Reading

  1. Krings T, Geibprasert S (2009) Spinal dural arteriovenous fistulas. AJNR Am J Neuroradiol 30(4):639–648PubMedCrossRefGoogle Scholar
  2. Krings T, Lasjaunias PL, Hans FJ et al (2007) Imaging in spinal vascular disease. Neuroimaging Clin N Am 17(1):57–72PubMedCrossRefGoogle Scholar
  3. Krishna V, Lazaridis C, Ellegala D et al (2012) Spinal cord infarction associated with subarachnoid hemorrhage. Clin Neurol Neurosurg 114(7):1030–1032PubMedCentralPubMedCrossRefGoogle Scholar
  4. Lasjaunias P, Berenstein A, TerBrugge K (2001) Clinical vascular anatomy and variations. In: Surgical neuroangiography, vol 1. Springer, BerlinGoogle Scholar
  5. Nair S, Gobin YP, Leng LZ et al (2013) Preoperative embolization of hypervascular thoracic, lumbar, and sacral spinal column tumors: technique and outcomes from a single center. Interv Neuroradiol 19(3):377–385PubMedCentralPubMedGoogle Scholar
  6. Patsalides A, Knopman J, Santillan A, Tsiouris AJ, Riina H, Gobin YP (2011) Endovascular treatment of spinal arteriovenous lesions: beyond the dural fistula. AJNR Am J Neuroradiol 32(5):798–808PubMedCrossRefGoogle Scholar
  7. Saindane AM, Boddu SR, Tong FC, Dehkharghani S, Dion JE (2014) Contrast-enhanced time-resolved MRA for pre-angiographic evaluation of suspected spinal dural arterial venous fistulas. J Neurointerv Surg 7:135–140PubMedCrossRefGoogle Scholar
  8. Santillan A, Nacarino V, Greenberg E, Riina HA, Gobin YP, Patsalides A (2012) Vascular anatomy of the spinal cord. J Neurointerv Surg 4(1):67–74PubMedCrossRefGoogle Scholar
  9. Setacci F, Sirignano P, De Donato G et al (2010) Endovascular thoracic aortic repair and risk of spinal cord ischemia: the role of previous or concomitant treatment for aortic aneurysm. J Cardiovasc Surg (Torino) 51(2):169–176Google Scholar
  10. Thurnher MM, Cartes-Zumelzu F, Mueller-Mang C (2007) Demyelinating and infectious diseases of the spinal cord. Neuroimaging Clin N Am 17(1):37–55PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Srikanth R. Boddu
    • 1
  • Alessandro Cianfoni
    • 2
  • Kyung-Wha Kim
    • 3
  • Mohammad Amin Banihashemi
    • 1
  • Emanuele Pravatà
    • 4
  • Y. Pierre Gobin
    • 1
  • Athos Patsalides
    • 1
  1. 1.Department of Neurological SurgeryWeill Cornell Medical CenterNew YorkUSA
  2. 2.Department of RadiologyMedical University of South CarolinaCharlestonUSA
  3. 3.New York Presbyterian HospitalWeill Cornell Medical College of Cornell UniversityNew YorkUSA
  4. 4.Neuroradiology DepartmentNeurocenter of Italian SwitzerlandLuganoSwitzerland

Personalised recommendations