Skip to main content

Spinal Cord Infarction and Differential Diagnosis

  • Reference work entry
  • First Online:
Neurovascular Imaging

Abstract

Spinal cord infarction is a rare disease and constitutes one of the acute spinal emergencies. In comparison to its cerebral counterpart, the spinal cord infarction has extremely low incidence, possibly related to the abundance of the arterial anastomosis and low incidence of the atherosclerosis in the spinal arteries. Since the first spinal cord infarction reported in early nineteenth century, there has been remarkable progress in the understanding of this disease entity. However, the fact that there is no established standard of care treatment as of today highlights the complexity and challenging nature of this disease. In this chapter the arterial anatomy of the spinal cord, etiopathogenesis, and clinical presentation of the cord infarction with specific emphasis on the imaging findings and differential diagnosis are discussed. The role of catheter angiography was specifically addressed along with the merits and pitfalls of the noninvasive angiography. The chapter concludes a discussion on the current and potential future treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nedeltchev K, Loher TJ, Stepper F et al (2004) Long-term outcome of acute spinal cord ischemia syndrome. Stroke 35(2):560–565. doi:10.1161/01.STR.0000111598.78198.EC

    Article  PubMed  Google Scholar 

  2. de Seze J, Stojkovic T, Breteau G et al (2001) Acute myelopathies clinical, laboratory and outcome profiles in 79 cases. Brain 124(8):1509–1521. doi:10.1093/brain/124.8.1509

    Article  PubMed  Google Scholar 

  3. Martinelli V, Comi G, Rovaris M et al (1995) Acute myelopathy of unknown aetiology: a clinical, neurophysiological and MRI study of short- and long-term prognostic factors. J Neurol 242(8):497–503

    Article  CAS  PubMed  Google Scholar 

  4. Woollam DH, Millen JW (1955) The arterial supply of the spinal cord and its significance. J Neurol Neurosurg Psychiatry 18(2):97–102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Singer D (1902) The pathology of so-called acute myelitis. Brain 25(2):332–340

    Article  Google Scholar 

  6. Slager UT, Webb AT (1973) Pathologic findings in the spinal cord. Arch Pathol 96(6):388–394

    CAS  PubMed  Google Scholar 

  7. Sandson TA, Friedman JH (1989) Spinal cord infarction. Report of 8 cases and review of the literature. Medicine (Baltimore) 68(5):282–292

    Article  CAS  Google Scholar 

  8. Hirtz D, Thurman DJ, Gwinn-Hardy K, Mohamed M, Chaudhuri AR, Zalutsky R (2007) How common are the “common” neurologic disorders? Neurology 68(5):326–337. doi:10.1212/01.wnl.0000252807.38124.a3

    Article  CAS  PubMed  Google Scholar 

  9. Cheshire WP, Santos CC, Massey EW, Howard JF Jr (1996) Spinal cord infarction: etiology and outcome. Neurology 47(2):321–330. doi:10.1212/WNL.47.2.321

    Article  CAS  PubMed  Google Scholar 

  10. Robertson CE, Brown RD Jr, Wijdicks EFM, Rabinstein AA (2012) Recovery after spinal cord infarcts: long-term outcome in 115 patients. Neurology 78(2):114–121. doi:10.1212/WNL.0b013e31823efc93

    Article  PubMed Central  PubMed  Google Scholar 

  11. Abercrombie J (1831) Pathological and practical researches on diseases of the brain and the spinal cord. Carey & Lea, Philadelphia

    Google Scholar 

  12. Tweedie A, Gerhard W (1842) A system of practical medicine comprised in a series of original dissertations. Lea & Blanchard, Philadelphia

    Google Scholar 

  13. Santillan A, Nacarino V, Greenberg E, Riina HA, Gobin YP, Patsalides A (2012) Vascular anatomy of the spinal cord. J Neurointerv Surg 4(1):67–74. doi:10.1136/neurintsurg-2011-010018

    Article  PubMed  Google Scholar 

  14. Manelfe C, Lazorthes G, Roulleau J (1972) Arteries of the human spinal dura mater. Acta Radiol Diagn (Stockh) 13:829–841

    CAS  Google Scholar 

  15. Thron A (1988) Vascular anatomy of the spinal cord. Neuroradiological investigations and clinical syndromes. Springer, New York

    Book  Google Scholar 

  16. Hong MK-Y, Hong MK-H, Pan W-R, Wallace D, Ashton MW, Taylor GI (2008) The angiosome territories of the spinal cord: exploring the issue of preoperative spinal angiography. Laboratory investigation. J Neurosurg Spine 8(4):352–364. doi:10.3171/SPI/2008/8/4/352

    Article  PubMed  Google Scholar 

  17. Lasjaunias P, Berenstein A, TerBrugge K (2001) Clinical vascular anatomy and variations. In: Surgical neuroangiography, vol 1. Springer, Berlin

    Google Scholar 

  18. Piscol K (1972) Blood supply of the spinal cord and its clinical importance. Schriftenr Neurol 8:1–91

    CAS  PubMed  Google Scholar 

  19. Brockstein B, Johns L, Gewertz BL (1994) Blood supply to the spinal cord: anatomic and physiologic correlations. Ann Vasc Surg 8(4):394–399

    Article  CAS  PubMed  Google Scholar 

  20. Lazorthes G, Poulhes J, Bastide G, Roulleau J, Chancholle AR (1958) Arterial vascularization of the spine; anatomic research and applications in pathology of the spinal cord and aorta. Neurochirurgie 4(1):3–19

    CAS  PubMed  Google Scholar 

  21. Koshino T, Murakami G, Morishita K, Mawatari T, Abe T (1999) Does the Adamkiewicz artery originate from the larger segmental arteries? J Thorac Cardiovasc Surg 117(5):898–905

    Article  CAS  PubMed  Google Scholar 

  22. Hyodoh H, Shirase R, Akiba H et al (2007) Double-subtraction maximum intensity projection MR angiography for detecting the artery of Adamkiewicz and differentiating it from the drainage vein. J Magn Reson Imaging 26(2):359–365. doi:10.1002/jmri.21024

    Article  PubMed  Google Scholar 

  23. Charles YP, Barbe B, Beaujeux R, Boujan F, Steib J-P (2011) Relevance of the anatomical location of the Adamkiewicz artery in spine surgery. Surg Radiol Anat 33(1):3–9. doi:10.1007/s00276-010-0654-0

    Article  PubMed  Google Scholar 

  24. Garland H, Greenberg J, Harriman DG (1966) Infarction of the spinal cord. Brain J Neurol 89(4):645–662

    Article  CAS  Google Scholar 

  25. Sliwa JA, Maclean IC (1992) Ischemic myelopathy: a review of spinal vasculature and related clinical syndromes. Arch Phys Med Rehabil 73(4):365–372

    Article  CAS  PubMed  Google Scholar 

  26. Gilles FH, Nag D (1971) Vulnerability of human spinal cord in transient cardiac arrest. Neurology 21(8):833–839

    Article  CAS  PubMed  Google Scholar 

  27. Azzarelli B, Roessmann U (1977) Diffuse “anoxic” myelopathy. Neurology 27(11):1049–1052

    Article  CAS  PubMed  Google Scholar 

  28. Rothman SM, Nelson JS (1980) Spinal cord infarction in a patient with sickle cell anemia. Neurology 30(10):1072–1076

    Article  CAS  PubMed  Google Scholar 

  29. Houdart R, Djindjian R (1966) Angiomas of the spinal cord. Proc R Soc Med 59(8):787–790

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Satran R (1988) Spinal cord infarction. Stroke 19(4):529–532

    Article  CAS  PubMed  Google Scholar 

  31. Whiteley AM, Hauw JJ, Escourolle R (1979) A pathological survey of 41 cases of acute intrinsic spinal cord disease. J Neurol Sci 42(2):229–242

    Article  CAS  PubMed  Google Scholar 

  32. Shakir RA, Sulaiman K, Kahn RA, Rudwan M (1990) Neurological presentation of neuro-Behçet’s syndrome: clinical categories. Eur Neurol 30(5):249–253

    Article  CAS  PubMed  Google Scholar 

  33. Gibb WR, Urry PA, Lees AJ (1985) Giant cell arteritis with spinal cord infarction and basilar artery thrombosis. J Neurol Neurosurg Psychiatry 48(9):945–948

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Sawaya GR, Kaminski MJ (1990) Spinal cord infarction after cocaine use. South Med J 83(5):601–602

    Article  CAS  PubMed  Google Scholar 

  35. Walden JE, Castillo M (2012) Sildenafil-induced cervical spinal cord infarction. AJNR Am J Neuroradiol 33(3):E32–E33. doi:10.3174/ajnr.A2628

    Article  CAS  PubMed  Google Scholar 

  36. Adams HD, van Geertruyden HH (1956) Neurologic complications of aortic surgery. Ann Surg 144(4):574–609. Available at http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1465537/. Accessed 20 Mar 2014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Xenos ES, Abedi NN, Davenport DL et al (2008) Meta-analysis of endovascular vs open repair for traumatic descending thoracic aortic rupture. J Vasc Surg 48(5):1343–1351. doi:10.1016/j.jvs.2008.04.060

    Article  PubMed  Google Scholar 

  38. Amabile P, Grisoli D, Giorgi R, Bartoli J-M, Piquet P (2008) Incidence and determinants of spinal cord ischaemia in stent-graft repair of the thoracic aorta. Eur J Vasc Endovasc Surg 35(4):455–461. doi:10.1016/j.ejvs.2007.11.005

    Article  CAS  PubMed  Google Scholar 

  39. Maldonado TS, Rockman CB, Riles E et al (2004) Ischemic complications after endovascular abdominal aortic aneurysm repair. J Vasc Surg 40(4):703–709. doi:10.1016/j.jvs.2004.07.032; discussion 709–710

    Article  PubMed  Google Scholar 

  40. Messé SR, Bavaria JE, Mullen M et al (2008) Neurologic outcomes from high risk descending thoracic and thoracoabdominal aortic operations in the era of endovascular repair. Neurocrit Care 9(3):344–351. doi:10.1007/s12028-008-9104-9

    Article  PubMed  Google Scholar 

  41. Bavaria JE, Appoo JJ, Makaroun MS et al (2007) Endovascular stent grafting versus open surgical repair of descending thoracic aortic aneurysms in low-risk patients: a multicenter comparative trial. J Thorac Cardiovasc Surg 133(2):369–377. doi:10.1016/j.jtcvs.2006.07.040

    Article  PubMed  Google Scholar 

  42. Setacci F, Sirignano P, De Donato G et al (2010) Endovascular thoracic aortic repair and risk of spinal cord ischemia: the role of previous or concomitant treatment for aortic aneurysm. J Cardiovasc Surg (Torino) 51(2):169–176

    CAS  Google Scholar 

  43. Crawford ES, Crawford JL, Safi HJ et al (1986) Thoracoabdominal aortic aneurysms: preoperative and intraoperative factors determining immediate and long-term results of operations in 605 patients. J Vasc Surg 3(3):389–404

    Article  CAS  PubMed  Google Scholar 

  44. Gloviczki P, Cross SA, Stanson AW et al (1991) Ischemic injury to the spinal cord or lumbosacral plexus after aorto-iliac reconstruction. Am J Surg 162(2):131–136

    Article  CAS  PubMed  Google Scholar 

  45. Ross RT (1985) Spinal cord infarction in disease and surgery of the aorta. Can J Neurol Sci 12(4):289–295

    CAS  PubMed  Google Scholar 

  46. Mawad ME, Rivera V, Crawford S, Ramirez A, Breitbach W (1990) Spinal cord ischemia after resection of thoracoabdominal aortic aneurysms: MR findings in 24 patients. AJNR Am J Neuroradiol 11(5):987–991

    CAS  PubMed  Google Scholar 

  47. Brusoni B, Colombo A, Merlo L, Marchetti G, Longo T (1978) Hemodynamic and metabolic changes induced by temporary clamping of the thoracic aorta. Eur Surg Res 10(3):206–216

    Article  CAS  PubMed  Google Scholar 

  48. Hurst RW, Haskal ZJ, Zager E, Bagley LJ, Flamm ES (1998) Endovascular stent treatment of cervical internal carotid artery aneurysms with parent vessel preservation. Surg Neurol 50(4):313–317; discussion 317. Available at http://www.ncbi.nlm.nih.gov/pubmed/9817452. Accessed 20 Mar 2012

    Article  CAS  PubMed  Google Scholar 

  49. Hughes JT, Brownell B (1966) Spinal cord ischemia due to arteriosclerosis. Arch Neurol 15(2):189–202

    Article  CAS  PubMed  Google Scholar 

  50. Tubbs RS, Blouir MC, Romeo AK, Mortazavi MM, Cohen-Gadol AA (2011) Spinal cord ischemia and atherosclerosis: a review of the literature. Br J Neurosurg 25(6):666–670. doi:10.3109/02688697.2011.578774

    Article  PubMed  Google Scholar 

  51. Duggal N, Lach B (2002) Selective vulnerability of the lumbosacral spinal cord after cardiac arrest and hypotension. Stroke 33(1):116–121. doi:10.1161/hs0102.101923

    Article  CAS  PubMed  Google Scholar 

  52. Slavin RE, Gonzalez-Vitale JC, Marin OS (1975) Atheromatous emboli to the lumbosacral spinal cord. Stroke 6(4):411–415

    Article  CAS  PubMed  Google Scholar 

  53. Coleman J (1898) Dissecting aneurysm. Trans R Acad Med Irel 16(1):116–124

    Article  Google Scholar 

  54. Tracci C, Cherry KJ Jr (2012) The aorta. In: Townsend CM (ed) Sabiston textbook of surgery. Saunders/Elsevier, Philadelphia, pp 1697–1724

    Chapter  Google Scholar 

  55. Gaul C, Dietrich W, Friedrich I, Sirch J, Erbguth FJ (2007) Neurological symptoms in type A aortic dissections. Stroke 38(2):292–297. doi:10.1161/01.STR.0000254594.33408.b1

    Article  PubMed  Google Scholar 

  56. Suzuki T, Mehta RH, Ince H et al (2003) Clinical profiles and outcomes of acute type B aortic dissection in the current era: lessons from the International Registry of Aortic Dissection (IRAD). Circulation 108(Suppl 1):II312–II317. doi:10.1161/01.cir.0000087386.07204.09

    PubMed  Google Scholar 

  57. Sladky JT, Rorke LB (1986) Perinatal hypoxic/ischemic spinal cord injury. Pediatr Pathol 6(1):87–101

    Article  CAS  PubMed  Google Scholar 

  58. Thompson TP, Pearce J, Chang G, Madamba J (2004) Surfer’s myelopathy. Spine 29(16):E353–E356

    Article  PubMed  Google Scholar 

  59. Chang CWJ, Donovan DJ, Liem LK et al (2012) Surfers’ myelopathy: a case series of 19 novice surfers with nontraumatic myelopathy. Neurology 79(22):2171–2176. doi:10.1212/WNL.0b013e31827595cd

    Article  PubMed  Google Scholar 

  60. Shamji MF, Maziak DE, Shamji FM, Ginsberg RJ, Pon R (2003) Circulation of the spinal cord: an important consideration for thoracic surgeons. Ann Thorac Surg 76(1):315–321

    Article  PubMed  Google Scholar 

  61. Nakamoto BK, Siu AM, Hashiba KA et al (2013) Surfer’s myelopathy: a radiologic study of 23 cases. AJNR Am J Neuroradiol 34(12):2393–2398. doi:10.3174/ajnr.A3599

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Hirose G, Singer P, Bass NH (1971) Successful treatment of posthypoxic action myoclonus with carbamazepine. JAMA 218(9):1432–1433

    Article  CAS  PubMed  Google Scholar 

  63. Mori S, Sadoshima S, Tagawa K, Iino K, Fujishima M (1993) Massive spinal cord infarction with multiple paradoxical embolism: a case report. Angiology 44(3):251–256

    Article  CAS  PubMed  Google Scholar 

  64. Naiman JL, Donohue WL, Prichard JS (1961) Fatal nucleus pulposus embolism of spinal cord after trauma. Neurology 11:83–87

    Article  CAS  PubMed  Google Scholar 

  65. Tosi L, Rigoli G, Beltramello A (1996) Fibrocartilaginous embolism of the spinal cord: a clinical and pathogenetic reconsideration. J Neurol Neurosurg Psychiatry 60(1):55–60

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Srigley JR, Lambert CD, Bilbao JM, Pritzker KP (1981) Spinal cord infarction secondary to intervertebral disc embolism. Ann Neurol 9(3):296–301. doi:10.1002/ana.410090315

    Article  CAS  PubMed  Google Scholar 

  67. Mathew P, Todd NV, Hadley DM, Adams JH (1993) Spinal cord infarction following meningitis. Br J Neurosurg 7(6):701–704

    Article  CAS  PubMed  Google Scholar 

  68. Von Pohle WR (1996) Disseminated mucormycosis presenting with lower extremity weakness. Eur Respir J 9(8):1751–1753

    Article  Google Scholar 

  69. Brown AC, Ray CE (2012) Anterior spinal cord infarction following bronchial artery embolization. Semin Intervent Radiol 29(3):241–244. doi:10.1055/s-0032-1326936

    Article  PubMed Central  PubMed  Google Scholar 

  70. Gang DL, Dole KB, Adelman LS (1977) Spinal cord infarction following therapeutic renal artery embolization. JAMA 237(26):2841–2842

    Article  CAS  PubMed  Google Scholar 

  71. Vujic I, Pyle R, Parker E, Mithoefer J (1980) Control of massive hemoptysis by embolization of intercostal arteries. Radiology 137(3):617–620. doi:10.1148/radiology.137.3.7444046

    Article  CAS  PubMed  Google Scholar 

  72. Ozoilo K, Stein M (2013) Paraplegia complicating embolization for bleeding intercostal artery in penetrating trauma. Inj Extra 44(8):70–73. doi:10.1016/j.injury.2013.05.015

    Article  Google Scholar 

  73. Heller SL, Meyer JR, Russell EJ (1996) Spinal cord venous infarction following endoscopic sclerotherapy for esophageal varices. Neurology 47(4):1081–1085

    Article  CAS  PubMed  Google Scholar 

  74. Tofuku K, Koga H, Yamamoto T, Yone K, Komiya S (2008) Spinal cord infarction following endoscopic variceal ligation. Spinal Cord 46(3):241–242. doi:10.1038/sj.sc.3102092

    Article  CAS  PubMed  Google Scholar 

  75. Neal JM, Bernards CM, Hadzic A et al (2008) ASRA practice advisory on neurologic complications in regional anesthesia and pain mMedicine. Reg Anesth Pain Med 33(5):404–415. doi:10.1016/j.rapm.2008.07.527

    Article  PubMed Central  PubMed  Google Scholar 

  76. Forbes G, Nichols DA, Jack CR Jr et al (1988) Complications of spinal cord arteriography: prospective assessment of risk for diagnostic procedures. Radiology 169(2):479–484. doi:10.1148/radiology.169.2.3174997

    Article  CAS  PubMed  Google Scholar 

  77. Gonzalez LF, Zabramski JM, Tabrizi P, Wallace RC, Massand MG, Spetzler RF (2005) Spontaneous spinal subarachnoid hemorrhage secondary to spinal aneurysms: diagnosis and treatment paradigm. Neurosurgery 57(6):1127–1131; discussion 1127–1131

    Article  PubMed  Google Scholar 

  78. Krishna V, Lazaridis C, Ellegala D et al (2012) Spinal cord infarction associated with subarachnoid hemorrhage. Clin Neurol Neurosurg 114(7):1030–1032. doi:10.1016/j.clineuro.2012.01.037

    Article  PubMed Central  PubMed  Google Scholar 

  79. Anthes DL, Theriault E, Tator CH (1996) Ultrastructural evidence for arteriolar vasospasm after spinal cord trauma. Neurosurgery 39(4):804–814

    Article  CAS  PubMed  Google Scholar 

  80. Krings T, Lasjaunias PL, Hans FJ et al (2007) Imaging in spinal vascular disease. Neuroimaging Clin N Am 17(1):57–72. doi:10.1016/j.nic.2007.01.001

    Article  PubMed  Google Scholar 

  81. Blatteau J-E, Gempp E, Simon O et al (2011) Prognostic factors of spinal cord decompression sickness in recreational diving: retrospective and multicentric analysis of 279 cases. Neurocrit Care 15(1):120–127. doi:10.1007/s12028-010-9370-1

    Article  PubMed  Google Scholar 

  82. Aharon-Peretz J, Adir Y, Gordon CR, Kol S, Gal N, Melamed Y (1993) Spinal cord decompression sickness in sport diving. Arch Neurol 50(7):753–756

    Article  CAS  PubMed  Google Scholar 

  83. Kim RC, Smith HR, Henbest ML, Choi BH (1984) Nonhemorrhagic venous infarction of the spinal cord. Ann Neurol 15(4):379–385. doi:10.1002/ana.410150413

    Article  CAS  PubMed  Google Scholar 

  84. Sekhon LH, Fehlings MG (2001) Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine 26(24 Suppl):S2–S12

    Article  CAS  PubMed  Google Scholar 

  85. Fehlings MG, Sekhon LH (2000) Cellular, ionic and biomolecular mechanisms of the injury process. In: Tator CH, Benzel EC (eds) Contemporary management of spinal cord injury: from impact to rehabilitation. American Association of Neurological Surgeons, New York, pp 33–50

    Google Scholar 

  86. Allen A (1911) Surgery of experimental lesion of spinal cord equivalent to crush injury of fracture dislocation of spinal column. A preliminary report. JAMA 57:878–880

    Article  Google Scholar 

  87. Allen A (1914) Remarks on the histopathological changes in the spinal cord due to impact an experimental study. J Nerv Ment Dis 31:141–147

    Article  Google Scholar 

  88. Demopoulos H, Flamm ES, Seligman M (1979) Membrane perturbations in central nervous system injury: theoretical basis for free radical damage and a review of the experimental data. In: Popp AJ (ed) Neural trauma. Raven Press, New York, pp 63–78

    Google Scholar 

  89. Anderson DK, Hall ED (1993) Pathophysiology of spinal cord trauma. Ann Emerg Med 22(6):987–992

    Article  CAS  PubMed  Google Scholar 

  90. Collins WF (1983) A review and update of experiment and clinical studies of spinal cord injury. Paraplegia 21(4):204–219. doi:10.1038/sc.1983.34

    Article  CAS  PubMed  Google Scholar 

  91. Dusart I, Schwab ME (1994) Secondary cell death and the inflammatory reaction after dorsal hemisection of the rat spinal cord. Eur J Neurosci 6(5):712–724

    Article  CAS  PubMed  Google Scholar 

  92. Tator CH (1991) Review of experimental spinal cord injury with emphasis on the local and systemic circulatory effects. Neurochirurgie 37(5):291–302

    CAS  PubMed  Google Scholar 

  93. Young W, Koreh I (1986) Potassium and calcium changes in injured spinal cords. Brain Res 365(1):42–53

    Article  CAS  PubMed  Google Scholar 

  94. Hall ED, Wolf DL (1987) Post-traumatic spinal cord ischemia: relationship to injury severity and physiological parameters. Cent Nerv Syst Trauma 4(1):15–25

    CAS  PubMed  Google Scholar 

  95. Hall ED, Braughler JM (1982) Effects of intravenous methylprednisolone on spinal cord lipid peroxidation and Na+ + K+)-ATPase activity. Dose-response analysis during 1st hour after contusion injury in the cat. J Neurosurg 57(2):247–253. doi:10.3171/jns.1982.57.2.0247

    Article  CAS  PubMed  Google Scholar 

  96. Fehlings MG, Tator CH, Linden RD (1989) The effect of nimodipine and dextran on axonal function and blood flow following experimental spinal cord injury. J Neurosurg 71(3):403–416. doi:10.3171/jns.1989.71.3.0403

    Article  CAS  PubMed  Google Scholar 

  97. Tator CH, Fehlings MG (1991) Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 75(1):15–26. doi:10.3171/jns.1991.75.1.0015

    Article  CAS  PubMed  Google Scholar 

  98. Senter HJ, Venes JL (1979) Loss of autoregulation and posttraumatic ischemia following experimental spinal cord trauma. J Neurosurg 50(2):198–206. doi:10.3171/jns.1979.50.2.0198

    Article  CAS  PubMed  Google Scholar 

  99. Wolman L (1965) The disturbance of circulation in traumatic paraplegia in acute and late stages: a pathological study. Paraplegia 2:213–226. doi:10.1038/sc.1964.39

    Article  CAS  PubMed  Google Scholar 

  100. Sandler AN, Tator CH (1976) Regional spinal cord blood flow in primates. J Neurosurg 45(6):647–659. doi:10.3171/jns.1976.45.6.0647

    Article  CAS  PubMed  Google Scholar 

  101. Blisard KS, Follis F, Wong R, Miller KB, Wernly JA, Scremin OU (1995) Degeneration of axons in the corticospinal tract secondary to spinal cord ischemia in rats. Paraplegia 33(3):136–140. doi:10.1038/sc.1995.30

    Article  CAS  PubMed  Google Scholar 

  102. Suh T, Alexander L (1939) Vascular system of the human spinal cord. Arch Neurol Psychiatry 1939(41):660–676

    Google Scholar 

  103. Grassner L, Klausner F, Wagner M et al (2014) Acute and chronic evolution of MRI findings in a case of posterior spinal cord ischemia. Spinal Cord 52:S23–S24. doi:10.1038/sc.2013.165

    Article  PubMed  Google Scholar 

  104. Fried LC, Goodkin R (1971) Microangiographic observations of the experimentally traumatized spinal cord. J Neurosurg 35(6):709–714. doi:10.3171/jns.1971.35.6.0709

    Article  CAS  PubMed  Google Scholar 

  105. Dohrmann GJ, Wick KM (1973) Intramedullary blood flow patterns in transitory traumatic paraplegia. Surg Neurol 1(4):209–215

    CAS  PubMed  Google Scholar 

  106. Assenmacher DR, Ducker TB (1971) Experimental traumatic paraplegia. The vascular and pathological changes seen in reversible and irreversible spinal-cord lesions. J Bone Joint Surg Am 53(4):671–680

    CAS  PubMed  Google Scholar 

  107. Griffiths IR, Miller R (1974) Vascular permeability to protein and vasogenic oedema in experimental concussive injuries to the canine spinal cord. J Neurol Sci 22(3):291–304

    Article  CAS  PubMed  Google Scholar 

  108. Hsu CY, Hogan EL, Gadsden RH Sr, Spicer KM, Shi MP, Cox RD (1985) Vascular permeability in experimental spinal cord injury. J Neurol Sci 70(3):275–282

    Article  CAS  PubMed  Google Scholar 

  109. Stewart WB, Wagner FC (1979) Vascular permeability changes in the contused feline spinal cord. Brain Res 169(1):163–167

    Article  CAS  PubMed  Google Scholar 

  110. Young W, Flamm ES (1982) Effect of high-dose corticosteroid therapy on blood flow, evoked potentials, and extracellular calcium in experimental spinal injury. J Neurosurg 57(5):667–673. doi:10.3171/jns.1982.57.5.0667

    Article  CAS  PubMed  Google Scholar 

  111. Young W, DeCrescito V, Tomasula JJ, Ho V (1980) The role of the sympathetic nervous system in pressor responses induced by spinal injury. J Neurosurg 52(4):473–481. doi:10.3171/jns.1980.52.4.0473

    Article  CAS  PubMed  Google Scholar 

  112. Atkinson PP, Atkinson JL (1996) Spinal shock. Mayo Clin Proc 71(4):384–389. doi:10.1016/S0025-6196(11)64067-6

    Article  CAS  PubMed  Google Scholar 

  113. Henderson CE (1996) Programmed cell death in the developing nervous system. Neuron 17(4):579–585

    Article  CAS  PubMed  Google Scholar 

  114. Namura S, Zhu J, Fink K et al (1998) Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J Neurosci 18(10):3659–3668

    CAS  PubMed  Google Scholar 

  115. Hockenbery D (1995) Defining apoptosis. Am J Pathol 146(1):16–19

    PubMed Central  CAS  PubMed  Google Scholar 

  116. Crowe MJ, Bresnahan JC, Shuman SL, Masters JN, Beattie MS (1997) Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nat Med 3(1):73–76

    Article  CAS  PubMed  Google Scholar 

  117. Emery E, Aldana P, Bunge MB et al (1998) Apoptosis after traumatic human spinal cord injury. J Neurosurg 89(6):911–920. doi:10.3171/jns.1998.89.6.0911

    Article  CAS  PubMed  Google Scholar 

  118. Li GL, Brodin G, Farooque M et al (1996) Apoptosis and expression of Bcl-2 after compression trauma to rat spinal cord. J Neuropathol Exp Neurol 55(3):280–289

    Article  CAS  PubMed  Google Scholar 

  119. Tator CH, Koyanagi I (1997) Vascular mechanisms in the pathophysiology of human spinal cord injury. J Neurosurg 86(3):483–492. doi:10.3171/jns.1997.86.3.0483

    Article  CAS  PubMed  Google Scholar 

  120. Agrawal SK, Fehlings MG (1996) Mechanisms of secondary injury to spinal cord axons in vitro: role of Na+, Na(+)-K(+)-ATPase, the Na(+)-H+ exchanger, and the Na(+)-Ca2+ exchanger. J Neurosci 16(2):545–552

    CAS  PubMed  Google Scholar 

  121. Osterholm JL, Mathews GJ (1972) Altered norepinephrine metabolism, following experimental spinal cord injury. 2. Protection against traumatic spinal cord hemorrhagic necrosis by norepinephrine synthesis blockade with alpha methyl tyrosine. J Neurosurg 36(4):395–401. doi:10.3171/jns.1972.36.4.0395

    Article  CAS  PubMed  Google Scholar 

  122. Agrawal SK, Fehlings MG (1997) Role of NMDA and non-NMDA ionotropic glutamate receptors in traumatic spinal cord axonal injury. J Neurosci 17(3):1055–1063

    CAS  PubMed  Google Scholar 

  123. Faden AI, Simon RP (1988) A potential role for excitotoxins in the pathophysiology of spinal cord injury. Ann Neurol 23(6):623–626. doi:10.1002/ana.410230618

    Article  CAS  PubMed  Google Scholar 

  124. Demopoulos HB, Flamm ES, Pietronigro DD, Seligman ML (1980) The free radical pathology and the microcirculation in the major central nervous system disorders. Acta Physiol Scand Suppl 492:91–119

    CAS  PubMed  Google Scholar 

  125. Hall ED, Yonkers PA, Horan KL, Braughler JM (1989) Correlation between attenuation of posttraumatic spinal cord ischemia and preservation of tissue vitamin E by the 21-aminosteroid U74006F: evidence for an in vivo antioxidant mechanism. J Neurotrauma 6(3):169–176

    Article  CAS  PubMed  Google Scholar 

  126. Hung TK, Albin MS, Brown TD, Bunegin L, Albin R, Jannetta PJ (1975) Biomechanical responses to open experimental spinal cord injury. Surg Neurol 4(2):271–276

    CAS  PubMed  Google Scholar 

  127. Faden AI, Jacobs TP, Holaday JW (1982) Comparison of early and late naloxone treatment in experimental spinal injury. Neurology 32(6):677–681

    Article  CAS  PubMed  Google Scholar 

  128. Faden AI, Jacobs TP, Smith MT (1984) Evaluation of the calcium channel antagonist nimodipine in experimental spinal cord ischemia. J Neurosurg 60(4):796–799. doi:10.3171/jns.1984.60.4.0796

    Article  CAS  PubMed  Google Scholar 

  129. Wagner FC Jr, Stewart WB (1981) Effect of trauma dose on spinal cord edema. J Neurosurg 54(6):802–806. doi:10.3171/jns.1981.54.6.0802

    Article  PubMed  Google Scholar 

  130. Anderson DK, Means ED, Waters TR, Spears CJ (1980) Spinal cord energy metabolism following compression trauma to the feline spinal cord. J Neurosurg 53(3):375–380. doi:10.3171/jns.1980.53.3.0375

    Article  CAS  PubMed  Google Scholar 

  131. Casha S, Yu WR, Fehlings MG (2001) Oligodendroglial apoptosis occurs along degenerating axons and is associated with FAS and p75 expression following spinal cord injury in the rat. Neuroscience 103(1):203–218

    Article  CAS  PubMed  Google Scholar 

  132. De la Torre JC (1981) Spinal cord injury. Review of basic and applied research. Spine 6(4):315–335

    Article  PubMed  Google Scholar 

  133. Lou J, Lenke LG, Ludwig FJ, O’Brien MF (1998) Apoptosis as a mechanism of neuronal cell death following acute experimental spinal cord injury. Spinal Cord 36(10):683–690

    Article  CAS  PubMed  Google Scholar 

  134. Masson C, Pruvo JP, Meder JF et al (2004) Spinal cord infarction: clinical and magnetic resonance imaging findings and short term outcome. J Neurol Neurosurg Psychiatry 75(10):1431–1435. doi:10.1136/jnnp.2003.031724

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  135. Geldmacher D (2012) Vascular diseases of the nervous system: spinal cord vascular disease. In: Daroff RB, Bradley WG (eds) Bradley’s neurology in clinical practice, 6th edn. Saunders/Elsevier, Philadelphia, pp 1096–1099

    Google Scholar 

  136. Cheng M-Y, Lyu R-K, Chang Y-J et al (2008) Spinal cord infarction in Chinese patients. Clinical features, risk factors, imaging and prognosis. Cerebrovasc Dis 26(5):502–508. doi:10.1159/000155988

    Article  PubMed  Google Scholar 

  137. Maynard FM Jr, Bracken MB, Creasey G et al (1997) International standards for neurological and functional classification of spinal cord injury. American Spinal Injury Association. Spinal Cord 35(5):266–274

    Article  PubMed  Google Scholar 

  138. Misulis K (2012) Hemiplegia and monoplegia. In: Daroff RB, Mazziotta JC (eds) Bradley’s neurology in clinical practice, 6th edn. Saunders/Elsevier, Philadelphia, p 277

    Google Scholar 

  139. Dobkin B, Havton L (2012) Paraplegia and spinal cord syndromes. In: Bradley’s neurology in clinical practice, 6th edn. Saunders/Elsevier, Philadelphia, pp 286–289

    Chapter  Google Scholar 

  140. Vertinsky AT, Krasnokutsky MV, Augustin M, Bammer R (2007) Cutting-edge imaging of the spine. Neuroimaging Clin N Am 17(1):117–136. doi:10.1016/j.nic.2007.01.003

    Article  PubMed  Google Scholar 

  141. Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM (1990) The NMR phased array. Magn Reson Med 16(2):192–225

    Article  CAS  PubMed  Google Scholar 

  142. Griswold MA, Jakob PM, Heidemann RM et al (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47(6):1202–1210. doi:10.1002/mrm.10171

    Article  PubMed  Google Scholar 

  143. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42(5):952–962

    Article  CAS  PubMed  Google Scholar 

  144. Thurnher MM, Bammer R (2006) Diffusion-weighted MR imaging (DWI) in spinal cord ischemia. Neuroradiology 48(11):795–801. doi:10.1007/s00234-006-0130-z

    Article  PubMed  Google Scholar 

  145. Marcel C, Kremer S, Jeantroux J, Blanc F, Dietemann J-L, De Sèze J (2010) Diffusion-weighted imaging in noncompressive myelopathies: a 33-patient prospective study. J Neurol 257(9):1438–1445. doi:10.1007/s00415-010-5538-z

    Article  PubMed  Google Scholar 

  146. Novy J, Carruzzo A, Maeder P, Bogousslavsky J (2006) Spinal cord ischemia: clinical and imaging patterns, pathogenesis, and outcomes in 27 patients. Arch Neurol 63(8):1113–1120. doi:10.1001/archneur.63.8.1113

    Article  PubMed  Google Scholar 

  147. Salvador de la Barrera S, Barca-Buyo A, Montoto-Marqués A, Ferreiro-Velasco ME, Cidoncha-Dans M, Rodriguez-Sotillo A (2001) Spinal cord infarction: prognosis and recovery in a series of 36 patients. Spinal Cord 39(10):520–525. doi:10.1038/sj.sc.3101201

    Article  CAS  PubMed  Google Scholar 

  148. Hajnal JV, Doran M, Hall AS et al (1991) MR imaging of anisotropically restricted diffusion of water in the nervous system: technical, anatomic, and pathologic considerations. J Comput Assist Tomogr 15(1):1–18

    Article  CAS  PubMed  Google Scholar 

  149. Stepper F, Lövblad KO (2001) Anterior spinal artery stroke demonstrated by echo-planar DWI. Eur Radiol 11(12):2607–2610. doi:10.1007/s003300100926

    Article  CAS  PubMed  Google Scholar 

  150. Schlaug G, Siewert B, Benfield A, Edelman RR, Warach S (1997) Time course of the apparent diffusion coefficient (ADC) abnormality in human stroke. Neurology 49(1):113–119

    Article  CAS  PubMed  Google Scholar 

  151. Nogueira RG, Ferreira R, Grant PE et al (2012) Restricted diffusion in spinal cord infarction demonstrated by magnetic resonance line scan diffusion imaging. Stroke 43(2):532–535. doi:10.1161/STROKEAHA.111.624023

    Article  PubMed  Google Scholar 

  152. Küker W, Weller M, Klose U, Krapf H, Dichgans J, Nägele T (2004) Diffusion-weighted MRI of spinal cord infarction–high resolution imaging and time course of diffusion abnormality. J Neurol 251(7):818–824. doi:10.1007/s00415-004-0434-z

    Article  PubMed  Google Scholar 

  153. Bammer R, Fazekas F, Augustin M et al (2000) Diffusion-weighted MR imaging of the spinal cord. AJNR Am J Neuroradiol 21(3):587–591

    CAS  PubMed  Google Scholar 

  154. Gass A, Back T, Behrens S, Maras A (2000) MRI of spinal cord infarction. Neurology 54(11):2195

    Article  CAS  PubMed  Google Scholar 

  155. Zhang J, Huan Y, Qian Y, Sun L, Ge Y (2005) Multishot diffusion-weighted imaging features in spinal cord infarction. J Spinal Disord Tech 18(3):277–282

    PubMed  Google Scholar 

  156. Fortuna A, Ferrante L, Acqui M, Trillò G (1995) Spinal cord ischemia diagnosed by MRI. Case report and review of the literature. J Neuroradiol 22(2):115–122

    CAS  PubMed  Google Scholar 

  157. Weidauer S, Nichtweiss M, Lanfermann H, Zanella FE (2002) Spinal cord infarction: MR imaging and clinical features in 16 cases. Neuroradiology 44(10):851–857. doi:10.1007/s00234-002-0828-5

    Article  PubMed  Google Scholar 

  158. Beslow LA, Ichord RN, Zimmerman RA, Smith SE, Licht DJ (2008) Role of diffusion MRI in diagnosis of spinal cord infarction in children. Neuropediatrics 39(3):188–191. doi:10.1055/s-0028-1093335

    Article  CAS  PubMed  Google Scholar 

  159. Mull M, Thron A (2006) Spinal infarcts. In: Magnetic resonance imaging in ischemic stroke. Springer, Berlin, pp 251–267

    Chapter  Google Scholar 

  160. Faig J, Busse O, Salbeck R (1998) Vertebral body infarction as a confirmatory sign of spinal cord ischemic stroke: report of three cases and review of the literature. Stroke 29(1):239–243

    Article  CAS  PubMed  Google Scholar 

  161. Mikulis DJ, Ogilvy CS, McKee A, Davis KR, Ojeman RG (1992) Spinal cord infarction and fibrocartilagenous emboli. AJNR Am J Neuroradiol 13(1):155–160

    CAS  PubMed  Google Scholar 

  162. Yuh WT, Marsh EE, Wang AK et al (1992) MR imaging of spinal cord and vertebral body infarction. AJNR Am J Neuroradiol 13(1):145–154. Available at http://www.ajnr.org/content/13/1/145. Accessed 18 Mar 2014

    CAS  PubMed  Google Scholar 

  163. Haddad MC, Aabed al-Thagafi MY, Djurberg H (1996) MRI of spinal cord and vertebral body infarction in the anterior spinal artery syndrome. Neuroradiology 38(2):161–162

    Article  CAS  PubMed  Google Scholar 

  164. Cheng M-Y, Lyu R-K, Chang Y-J et al (2009) Concomitant spinal cord and vertebral body infarction is highly associated with aortic pathology: a clinical and magnetic resonance imaging study. J Neurol 256(9):1418–1426. doi:10.1007/s00415-009-5126-2

    Article  PubMed  Google Scholar 

  165. Hurst WR (2009) Vascular disorders of the spine and spinal cord. In: Atlas SW (ed) Magnetic resonance imaging of the brain and spine. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  166. Masson C, Leys D, Meder JF, Dousset V, Pruvo JP (2004) Spinal cord ischemia. J Neuroradiol 31(1):35–46

    Article  CAS  PubMed  Google Scholar 

  167. Chang Y, Jung T-D, Yoo DS, Hyun JK (2010) Diffusion tensor imaging and fiber tractography of patients with cervical spinal cord injury. J Neurotrauma 27(11):2033–2040. doi:10.1089/neu.2009.1265

    Article  PubMed  Google Scholar 

  168. Rajasekaran S, Kanna RM, Shetty AP, Ilayaraja V (2012) Efficacy of diffusion tensor anisotropy indices and tractography in assessing the extent of severity of spinal cord injury: an in vitro analytical study in calf spinal cords. Spine J 12(12):1147–1153. doi:10.1016/j.spinee.2012.10.032

    Article  PubMed  Google Scholar 

  169. Luo C-B, Chang F-C, Teng MM-H, Chen S-S, Lirng J-F, Chang C-Y (2003) Magnetic resonance imaging as a guide in the diagnosis and follow-up of spinal cord infarction. J Chin Med Assoc 66(2):89–95

    PubMed  Google Scholar 

  170. Ikuta F, Zimmerman HM (1976) Distribution of plaques in seventy autopsy cases of multiple sclerosis in the United States. Neurology 26(6 PT 2):26–28

    Article  CAS  PubMed  Google Scholar 

  171. Lycklama G, Thompson A, Filippi M et al (2003) Spinal-cord MRI in multiple sclerosis. Lancet Neurol 2(9):555–562

    Article  PubMed  Google Scholar 

  172. Thurnher MM, Cartes-Zumelzu F, Mueller-Mang C (2007) Demyelinating and infectious diseases of the spinal cord. Neuroimaging Clin N Am 17(1):37–55. doi:10.1016/j.nic.2006.12.002

    Article  PubMed  Google Scholar 

  173. Bachmann S, Kesselring J (1998) Multiple sclerosis and infectious childhood diseases. Neuroepidemiology 17(3):154–160

    Article  CAS  PubMed  Google Scholar 

  174. Bot JCJ, Blezer ELA, Kamphorst W et al (2004) The spinal cord in multiple sclerosis: relationship of high-spatial-resolution quantitative MR imaging findings to histopathologic results. Radiology 233(2):531–540. doi:10.1148/radiol.2332031572

    Article  PubMed  Google Scholar 

  175. Evangelou N, DeLuca GC, Owens T, Esiri MM (2005) Pathological study of spinal cord atrophy in multiple sclerosis suggests limited role of local lesions. Brain 128(Pt 1):29–34. doi:10.1093/brain/awh323

    Article  CAS  PubMed  Google Scholar 

  176. Tench CR, Morgan PS, Jaspan T, Auer DP, Constantinescu CS (2005) Spinal cord imaging in multiple sclerosis. J Neuroimaging 15(4 Suppl):94S–102S. doi:10.1177/1051228405283292

    Article  PubMed  Google Scholar 

  177. Bot JCJ, Barkhof F, Lycklama à Nijeholt G et al (2002) Differentiation of multiple sclerosis from other inflammatory disorders and cerebrovascular disease: value of spinal MR imaging. Radiology 223(1):46–56. doi:10.1148/radiol.2231010707

    Article  PubMed  Google Scholar 

  178. Paty DW, Oger JJ, Kastrukoff LF et al (1988) MRI in the diagnosis of MS: a prospective study with comparison of clinical evaluation, evoked potentials, oligoclonal banding, and CT. Neurology 38(2):180–185

    Article  CAS  PubMed  Google Scholar 

  179. Fazekas F, Offenbacher H, Fuchs S et al (1988) Criteria for an increased specificity of MRI interpretation in elderly subjects with suspected multiple sclerosis. Neurology 38(12):1822–1825

    Article  CAS  PubMed  Google Scholar 

  180. Barkhof F, Filippi M, Miller DH et al (1997) Comparison of MRI criteria at first presentation to predict conversion to clinically definite multiple sclerosis. Brain 120(Pt 11):2059–2069

    Article  PubMed  Google Scholar 

  181. Kerr DA, Ayetey H (2002) Immunopathogenesis of acute transverse myelitis. Curr Opin Neurol 15(3):339–347

    Article  PubMed  Google Scholar 

  182. Choi KH, Lee KS, Chung SO et al (1996) Idiopathic transverse myelitis: MR characteristics. AJNR Am J Neuroradiol 17(6):1151–1160

    CAS  PubMed  Google Scholar 

  183. Larner AJ, Farmer SF (2000) Myelopathy following influenza vaccination in inflammatory CNS disorder treated with chronic immunosuppression. Eur J Neurol 7(6):731–733

    Article  CAS  PubMed  Google Scholar 

  184. Bakshi R, Mazziotta JC (1996) Acute transverse myelitis after influenza vaccination: magnetic resonance imaging findings. J Neuroimaging 6(4):248–250

    CAS  PubMed  Google Scholar 

  185. De Seze J, Lanctin C, Lebrun C et al (2005) Idiopathic acute transverse myelitis: application of the recent diagnostic criteria. Neurology 65(12):1950–1953. doi:10.1212/01.wnl.0000188896.48308.26

    Article  PubMed  Google Scholar 

  186. Transverse Myelitis Consortium Working Group (2002) Proposed diagnostic criteria and nosology of acute transverse myelitis. Neurology 59(4):499–505

    Article  Google Scholar 

  187. Scotti G, Gerevini S (2001) Diagnosis and differential diagnosis of acute transverse myelopathy. The role of neuroradiological investigations and review of the literature. Neurol Sci 22(Suppl 2):S69–S73

    Article  PubMed  Google Scholar 

  188. Nance JR, Golomb MR (2007) Ischemic spinal cord infarction in children without vertebral fracture. Pediatr Neurol 36(4):209–216. doi:10.1016/j.pediatrneurol.2007.01.006

    Article  PubMed Central  PubMed  Google Scholar 

  189. Alper G (2012) Acute disseminated encephalomyelitis. J Child Neurol 27(11):1408–1425. doi:10.1177/0883073812455104

    Article  PubMed  Google Scholar 

  190. Singh S, Prabhakar S, Korah IP, Warade SS, Alexander M (2000) Acute disseminated encephalomyelitis and multiple sclerosis: magnetic resonance imaging differentiation. Australas Radiol 44(4):404–411

    Article  CAS  PubMed  Google Scholar 

  191. Khong P-L, Ho H-K, Cheng P-W, Wong VCN, Goh W, Chan F-L (2002) Childhood acute disseminated encephalomyelitis: the role of brain and spinal cord MRI. Pediatr Radiol 32(1):59–66. doi:10.1007/s00247-001-0582-6

    Article  PubMed  Google Scholar 

  192. Callen DJA, Shroff MM, Branson HM et al (2009) Role of MRI in the differentiation of ADEM from MS in children. Neurology 72(11):968–973. doi:10.1212/01.wnl.0000338630.20412.45

    Article  CAS  PubMed  Google Scholar 

  193. Baum PA, Barkovich AJ, Koch TK, Berg BO (1994) Deep gray matter involvement in children with acute disseminated encephalomyelitis. AJNR Am J Neuroradiol 15(7):1275–1283

    CAS  PubMed  Google Scholar 

  194. Pittock SJ, Lucchinetti CF (2006) Inflammatory transverse myelitis: evolving concepts. Curr Opin Neurol 19(4):362–368. doi:10.1097/01.wco.0000236615.59215.d3

    Article  PubMed  Google Scholar 

  195. Apak RA, Köse G, Anlar B, Turanli G, Topaloğlu H, Ozdirim E (1999) Acute disseminated encephalomyelitis in childhood: report of 10 cases. J Child Neurol 14(3):198–201

    Article  CAS  PubMed  Google Scholar 

  196. Thron A, Caplan L (2003) Vascular malformations and interventional neuroradiology of the spinal cord. In: Neurological disorderscourse and treatment. Academic, Amsterdam, pp 517–528

    Chapter  Google Scholar 

  197. Koenig E, Thron A, Schrader V, Dichgans J (1989) Spinal arteriovenous malformations and fistulae: clinical, neuroradiological and neurophysiological findings. J Neurol 236(5):260–266

    Article  CAS  PubMed  Google Scholar 

  198. Hurst RW, Kenyon LC, Lavi E, Raps EC, Marcotte P (1995) Spinal dural arteriovenous fistula: the pathology of venous hypertensive myelopathy. Neurology 45(7):1309–1313

    Article  CAS  PubMed  Google Scholar 

  199. Criscuolo GR, Oldfield EH, Doppman JL (1989) Reversible acute and subacute myelopathy in patients with dural arteriovenous fistulas. Foix-Alajouanine syndrome reconsidered. J Neurosurg 70(3):354–359. doi:10.3171/jns.1989.70.3.0354

    Article  CAS  PubMed  Google Scholar 

  200. De Marco JK, Dillon WP, Halback VV, Tsuruda JS (1990) Dural arteriovenous fistulas: evaluation with MR imaging. Radiology 175(1):193–199. doi:10.1148/radiology.175.1.2315480

    Article  PubMed  Google Scholar 

  201. Hurst RW, Grossman RI (2000) Peripheral spinal cord hypointensity on T2-weighted MR images: a reliable imaging sign of venous hypertensive myelopathy. AJNR Am J Neuroradiol 21(4):781–786

    CAS  PubMed  Google Scholar 

  202. Gomori JM, Grossman RI, Yu-Ip C, Asakura T (1987) NMR relaxation times of blood: dependence on field strength, oxidation state, and cell integrity. J Comput Assist Tomogr 11(4):684–690

    Article  CAS  PubMed  Google Scholar 

  203. Krings T, Geibprasert S (2009) Spinal dural arteriovenous fistulas. AJNR Am J Neuroradiol 30(4):639–648. doi:10.3174/ajnr.A1485

    Article  CAS  PubMed  Google Scholar 

  204. Weinzierl MR, Krings T, Korinth MC, Reinges MHT, Gilsbach JM (2004) MRI and intraoperative findings in cavernous haemangiomas of the spinal cord. Neuroradiology 46(1):65–71. doi:10.1007/s00234-003-1072-3

    Article  CAS  PubMed  Google Scholar 

  205. Balériaux DL (1999) Spinal cord tumors. Eur Radiol 9(7):1252–1258

    Article  PubMed  Google Scholar 

  206. Lowe GM (2000) Magnetic resonance imaging of intramedullary spinal cord tumors. J Neurooncol 47(3):195–210

    Article  CAS  PubMed  Google Scholar 

  207. Chu BC, Terae S, Hida K, Furukawa M, Abe S, Miyasaka K (2001) MR findings in spinal hemangioblastoma: correlation with symptoms and with angiographic and surgical findings. AJNR Am J Neuroradiol 22(1):206–217

    CAS  PubMed  Google Scholar 

  208. Wippold FJ 2nd, Smirniotopoulos JG, Moran CJ, Suojanen JN, Vollmer DG (1995) MR imaging of myxopapillary ependymoma: findings and value to determine extent of tumor and its relation to intraspinal structures. AJR Am J Roentgenol 165(5):1263–1267. doi:10.2214/ajr.165.5.7572515

    Article  PubMed  Google Scholar 

  209. Miyazawa N, Hida K, Iwasaki Y, Koyanagi I, Abe H (2000) MRI at 1.5 T of intramedullary ependymoma and classification of pattern of contrast enhancement. Neuroradiology 42(11):828–832

    Article  CAS  PubMed  Google Scholar 

  210. Richard S, Campello C, Taillandier L, Parker F, Resche F (1998) Haemangioblastoma of the central nervous system in von Hippel-Lindau disease. French VHL Study Group. J Intern Med 243(6):547–553

    Article  CAS  PubMed  Google Scholar 

  211. Bou-Haidar P, Peduto AJ, Karunaratne N (2009) Differential diagnosis of T2 hyperintense spinal cord lesions: part B. J Med Imaging Radiat Oncol 53(2):152–159. doi:10.1111/j.1754-9485.2009.02067.x

    Article  CAS  PubMed  Google Scholar 

  212. Chason JL, Walker FB, Landers JW (1963) Metastatic carcinoma in the central nervous system and dorsal root ganglia. A prospective autopsy study. Cancer 16:781–787

    Article  CAS  PubMed  Google Scholar 

  213. Costigan DA, Winkelman MD (1985) Intramedullary spinal cord metastasis. A clinicopathological study of 13 cases. J Neurosurg 62(2):227–233. doi:10.3171/jns.1985.62.2.0227

    Article  CAS  PubMed  Google Scholar 

  214. Kalayci M, Cağavi F, Gül S, Yenidünya S, Açikgöz B (2004) Intramedullary spinal cord metastases: diagnosis and treatment – an illustrated review. Acta Neurochir (Wien) 146(12):1347–1354. doi:10.1007/s00701-004-0386-1; discussion 1354

    Article  CAS  Google Scholar 

  215. Watanabe M, Nomura T, Toh E, Sato M, Mochida J (2006) Intramedullary spinal cord metastasis: a clinical and imaging study of seven patients. J Spinal Disord Tech 19(1):43–47. doi:10.1097/01.bsd.0000188661.08342.2a

    Article  PubMed  Google Scholar 

  216. Mut M, Schiff D, Shaffrey ME (2005) Metastasis to nervous system: spinal epidural and intramedullary metastases. J Neurooncol 75(1):43–56. doi:10.1007/s11060-004-8097-2

    Article  PubMed  Google Scholar 

  217. Haq A, Wasay M (2006) Magnetic resonance imaging in poliomyelitis. Arch Neurol 63(5):778. doi:10.1001/archneur.63.5.778

    Article  PubMed  Google Scholar 

  218. Ferraz-Filho JRL, dos Santos TU, de Oliveira EP, Souza AS (2010) MRI findings in an infant with vaccine-associated paralytic poliomyelitis. Pediatr Radiol 40(Suppl 1):S138–S140. doi:10.1007/s00247-010-1650-6

    Article  PubMed  Google Scholar 

  219. Hui AC, Wong KS, Fu M, Kay R (2000) Ischaemic myelopathy presenting as Guillain-Barré syndrome. Int J Clin Pract 54(5):340–341

    CAS  PubMed  Google Scholar 

  220. Hemmer B, Glocker FX, Schumacher M, Deuschl G, Lücking CH (1998) Subacute combined degeneration: clinical, electrophysiological, and magnetic resonance imaging findings. J Neurol Neurosurg Psychiatry 65(6):822–827

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  221. Thurnher MM, Post MJ, Jinkins JR (2000) MRI of infections and neoplasms of the spine and spinal cord in 55 patients with AIDS. Neuroradiology 42(8):551–563

    Article  CAS  PubMed  Google Scholar 

  222. McArthur JC, Brew BJ, Nath A (2005) Neurological complications of HIV infection. Lancet Neurol 4(9):543–555. doi:10.1016/S1474-4422(05)70165-4

    Article  PubMed  Google Scholar 

  223. Fitzgerald RH Jr, Marks RD Jr, Wallace KM (1982) Chronic radiation myelitis. Radiology 144(3):609–612. doi:10.1148/radiology.144.3.6808557

    Article  PubMed  Google Scholar 

  224. SreeHarsha CK, Rajasekaran S, Dhanasekararaja P (2006) Spontaneous complete recovery of paraplegia caused by epidural hematoma complicating epidural anesthesia: a case report and review of literature. Spinal Cord 44(8):514–517. doi:10.1038/sj.sc.3101869

    Article  CAS  PubMed  Google Scholar 

  225. Gobin YP (1997) Classification and endovascular treatment of spinal cord arteriovenous malformations and fistulas. J Stroke Cerebrovasc Dis 6(4):282–286

    Article  CAS  PubMed  Google Scholar 

  226. Yamada N, Okita Y, Minatoya K et al (2000) Preoperative demonstration of the Adamkiewicz artery by magnetic resonance angiography in patients with descending or thoracoabdominal aortic aneurysms. Eur J Cardiothorac Surg 18(1):104–111. doi:10.1016/S1010-7940(00)00412-7

    Article  CAS  PubMed  Google Scholar 

  227. Shi HB, Suh DC, Lee HK et al (1999) Preoperative transarterial embolization of spinal tumor: embolization techniques and results. AJNR Am J Neuroradiol 20(10):2009–2015. Available at http://www.ajnr.org/content/20/10/2009. Accessed 10 Mar 2014

    CAS  PubMed  Google Scholar 

  228. Backes WH, Nijenhuis RJ (2008) Advances in spinal cord MR angiography. AJNR Am J Neuroradiol 29(4):619–631. doi:10.3174/ajnr.A0910

    Article  CAS  PubMed  Google Scholar 

  229. Fereshetian A, Kadir S, Kaufman SL et al (1989) Digital subtraction spinal cord angiography in patients undergoing thoracic aneurysm surgery. Cardiovasc Intervent Radiol 12(1):7–9

    Article  CAS  PubMed  Google Scholar 

  230. Kieffer E, Richard T, Chiras J, Godet G, Cormier E (1989) Preoperative spinal cord arteriography in aneurysmal disease of the descending thoracic and thoracoabdominal aorta: preliminary results in 45 patients. Ann Vasc Surg 3(1):34–46

    Article  CAS  PubMed  Google Scholar 

  231. Kieffer E, Fukui S, Chiras J, Koskas F, Bahnini A, Cormier E (2002) Spinal cord arteriography: a safe adjunct before descending thoracic or thoracoabdominal aortic aneurysmectomy. J Vasc Surg 35(2):262–268

    Article  PubMed  Google Scholar 

  232. Williams GM, Roseborough GS, Webb TH, Perler BA, Krosnick T (2004) Preoperative selective intercostal angiography in patients undergoing thoracoabdominal aneurysm repair. J Vasc Surg 39(2):314–321. doi:10.1016/j.jvs.2003.09.039

    Article  PubMed  Google Scholar 

  233. Prestigiacomo CJ, Niimi Y, Setton A, Berenstein A (2003) Three-dimensional rotational spinal angiography in the evaluation and treatment of vascular malformations. AJNR Am J Neuroradiol 24(7):1429–1435. Available at http://www.ajnr.org/content/24/7/1429. Accessed 8 Mar 2014

    PubMed  Google Scholar 

  234. Ropper AE, Lin N, Gross BA et al (2012) Rotational angiography for diagnosis and surgical planning in the management of spinal vascular lesions. Neurosurg Focus 32(5):E6. doi:10.3171/2012.1.FOCUS11254

    Article  PubMed  Google Scholar 

  235. Matsumoto M, Kodama N, Endo Y et al (2007) Dynamic 3D-CT angiography. AJNR Am J Neuroradiol 28(2):299–304

    CAS  PubMed  Google Scholar 

  236. Takase K, Sawamura Y, Igarashi K et al (2002) Demonstration of the artery of Adamkiewicz at multi- detector row helical CT. Radiology 223(1):39–45. doi:10.1148/radiol.2231010513

    Article  PubMed  Google Scholar 

  237. Lai P-H, Pan H-B, Yang C-F et al (2005) Multi-detector row computed tomography angiography in diagnosing spinal dural arteriovenous fistula: initial experience. Stroke 36(7):1562–1564. doi:10.1161/01.STR.0000170048.94718.07

    Article  PubMed  Google Scholar 

  238. Lai PH, Weng MJ, Lee KW, Pan HB (2006) Multidetector CT angiography in diagnosing type I and type IVA spinal vascular malformations. AJNR Am J Neuroradiol 27(4):813–817

    CAS  PubMed  Google Scholar 

  239. Si-jia G, Meng-wei Z, Xi-ping L et al (2009) The clinical application studies of CT spinal angiography with 64-detector row spiral CT in diagnosing spinal vascular malformations. Eur J Radiol 71(1):22–28. doi:10.1016/j.ejrad.2008.04.005

    Article  PubMed  Google Scholar 

  240. Farb RI, Kim JK, Willinsky RA et al (2002) Spinal dural arteriovenous fistula localization with a technique of first-pass gadolinium-enhanced MR angiography: initial experience. Radiology 222(3):843–850. doi:10.1148/radiol.2223010826

    Article  PubMed  Google Scholar 

  241. Pattany PM, Saraf-Lavi E, Bowen BC (2003) MR angiography of the spine and spinal cord. Top Magn Reson Imaging 14(6):444–460

    Article  PubMed  Google Scholar 

  242. Bowen BC, DePrima S, Pattany PM, Marcillo A, Madsen P, Quencer RM (1996) MR angiography of normal intradural vessels of the thoracolumbar spine. AJNR Am J Neuroradiol 17(3):483–494

    CAS  PubMed  Google Scholar 

  243. Nijenhuis RJ, Jacobs MJ, Jaspers K et al (2007) Comparison of magnetic resonance with computed tomography angiography for preoperative localization of the Adamkiewicz artery in thoracoabdominal aortic aneurysm patients. J Vasc Surg 45(4):677–685. doi:10.1016/j.jvs.2006.11.046

    Article  PubMed  Google Scholar 

  244. Jaspers K, Nijenhuis RJ, Backes WH (2007) Differentiation of spinal cord arteries and veins by time-resolved MR angiography. J Magn Reson Imaging 26(1):31–40. doi:10.1002/jmri.20940

    Article  PubMed  Google Scholar 

  245. Ali S, Cashen TA, Carroll TJ et al (2007) Time-resolved spinal MR angiography: initial clinical experience in the evaluation of spinal arteriovenous shunts. AJNR Am J Neuroradiol 28(9):1806–1810. doi:10.3174/ajnr.A0639

    Article  CAS  PubMed  Google Scholar 

  246. Saindane AM, Boddu SR, Tong FC, Dehkharghani S, Dion JE (2014) Contrast-enhanced time-resolved MRA for pre-angiographic evaluation of suspected spinal dural arterial venous fistulas. J Neurointerv Surg 7:135–140. doi:10.1136/neurintsurg-2013-010981

    Article  PubMed  Google Scholar 

  247. Kaufmann TJ, Kallmes DF (2008) Diagnostic cerebral angiography: archaic and complication-prone or here to stay for another 80 years? AJR Am J Roentgenol 190(6):1435–1437. doi:10.2214/AJR.07.3522

    Article  PubMed  Google Scholar 

  248. Mull M, Nijenhuis RJ, Backes WH, Krings T, Wilmink JT, Thron A (2007) Value and limitations of contrast-enhanced MR angiography in spinal arteriovenous malformations and dural arteriovenous fistulas. AJNR Am J Neuroradiol 28(7):1249–1258. doi:10.3174/ajnr.A0612

    Article  CAS  PubMed  Google Scholar 

  249. Luetmer PH, Lane JI, Gilbertson JR, Bernstein MA, Huston J 3rd, Atkinson JLD (2005) Preangiographic evaluation of spinal dural arteriovenous fistulas with elliptic centric contrast-enhanced MR angiography and effect on radiation dose and volume of iodinated contrast material. AJNR Am J Neuroradiol 26(4):711–718

    PubMed  Google Scholar 

  250. Eddleman CS, Jeong H, Cashen TA et al (2009) Advanced noninvasive imaging of spinal vascular malformations. Neurosurg Focus 26(1):E9. doi:10.3171/FOC.2009.26.1.E9

    Article  PubMed Central  PubMed  Google Scholar 

  251. Di Chiro G, Wener L (1973) Angiography of the spinal cord. A review of contemporary techniques and applications. J Neurosurg 39(1):1–29. doi:10.3171/jns.1973.39.1.0001

    Article  PubMed  Google Scholar 

  252. Kaufmann TJ, Huston J 3rd, Mandrekar JN, Schleck CD, Thielen KR, Kallmes DF (2007) Complications of diagnostic cerebral angiography: evaluation of 19,826 consecutive patients. Radiology 243(3):812–819. doi:10.1148/radiol.2433060536

    Article  PubMed  Google Scholar 

  253. Chen J, Gailloud P (2011) Safety of spinal angiography: complication rate analysis in 302 diagnostic angiograms. Neurology 77(13):1235–1240. doi:10.1212/WNL.0b013e3182302068

    Article  PubMed  Google Scholar 

  254. Restrepo L, Wityk RJ, Grega MA et al (2002) Diffusion- and perfusion-weighted magnetic resonance imaging of the brain before and after coronary artery bypass grafting surgery. Stroke 33(12):2909–2915. Available at http://www.ncbi.nlm.nih.gov/pubmed/12468790. Accessed 26 Apr 2012

    Article  PubMed  Google Scholar 

  255. Baba H, Tomita K, Kawagishi T, Imura S (1993) Anterior spinal artery syndrome. Int Orthop 17(6):353–356

    CAS  PubMed  Google Scholar 

  256. Jauch EC, Saver JL, Adams HP Jr et al (2013) Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 44(3):870–947. doi:10.1161/STR.0b013e318284056a

    Article  PubMed  Google Scholar 

  257. McGarvey ML, Cheung AT, Szeto W, Messe SR (2007) Management of neurologic complications of thoracic aortic surgery. J Clin Neurophysiol 24(4):336–343. doi:10.1097/WNP.0b013e31811ec0b0

    PubMed  Google Scholar 

  258. Cheung AT, Weiss SJ, McGarvey ML et al (2002) Interventions for reversing delayed-onset postoperative paraplegia after thoracic aortic reconstruction. Ann Thorac Surg 74(2):413–419; discussion 420-421

    Article  PubMed  Google Scholar 

  259. Wallace MC, Tator CH, Frazee P (1986) Relationship between posttraumatic ischemia and hemorrhage in the injured rat spinal cord as shown by colloidal carbon angiography. Neurosurgery 18(4):433–439

    Article  CAS  PubMed  Google Scholar 

  260. Kirsch M, Berg-Dammer E, Musahl C, Bäzner H, Kühne D, Henkes H (2013) Endovascular management of spinal dural arteriovenous fistulas in 78 patients. Neuroradiology 55(3):337–343. doi:10.1007/s00234-013-1134-0

    Article  CAS  PubMed  Google Scholar 

  261. Anderson DK, Means ED, Waters TR, Green ES (1982) Microvascular perfusion and metabolism in injured spinal cord after methylprednisolone treatment. J Neurosurg 56(1):106–113. doi:10.3171/jns.1982.56.1.0106

    Article  CAS  PubMed  Google Scholar 

  262. Anderson DK, Saunders RD, Demediuk P et al (1985) Lipid hydrolysis and peroxidation in injured spinal cord: partial protection with methylprednisolone or vitamin E and selenium. Cent Nerv Syst Trauma 2(4):257–267

    CAS  PubMed  Google Scholar 

  263. Hall ED, Braughler JM (1982) Glucocorticoid mechanisms in acute spinal cord injury: a review and therapeutic rationale. Surg Neurol 18(5):320–327

    Article  CAS  PubMed  Google Scholar 

  264. Fehlings MG, Tator CH (1999) An evidence-based review of decompressive surgery in acute spinal cord injury: rationale, indications, and timing based on experimental and clinical studies. J Neurosurg 91(1 Suppl):1–11

    Article  CAS  PubMed  Google Scholar 

  265. Fehlings MG, Perrin RG (2005) The role and timing of early decompression for cervical spinal cord injury: update with a review of recent clinical evidence. Injury 36(Suppl 2):B13–B26. doi:10.1016/j.injury.2005.06.011

    Article  PubMed  Google Scholar 

  266. La Rosa G, Conti A, Cardali S, Cacciola F, Tomasello F (2004) Does early decompression improve neurological outcome of spinal cord injured patients? Appraisal of the literature using a meta-analytical approach. Spinal Cord 42(9):503–512. doi:10.1038/sj.sc.3101627

    Article  PubMed  Google Scholar 

  267. Fehlings MG, Vaccaro A, Wilson JR et al (2012) Early versus delayed decompression for traumatic cervical spinal cord injury: results of the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS). PLoS One 7(2):e32037. doi:10.1371/journal.pone.0032037

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  268. Van Middendorp JJ, Hosman AJF, Doi SAR (2013) The effects of the timing of spinal surgery after traumatic spinal cord injury: a systematic review and meta-analysis. J Neurotrauma 30(21):1781–1794. doi:10.1089/neu.2013.2932

    Article  PubMed  Google Scholar 

  269. DeVivo MJ, Kartus PL, Stover SL, Rutt RD, Fine PR (1989) Cause of death for patients with spinal cord injuries. Arch Intern Med 149(8):1761–1766

    Article  CAS  PubMed  Google Scholar 

  270. Young JS (1979) Spinal cord injury: associated general trauma and medical complications. Adv Neurol 22:255–260

    CAS  PubMed  Google Scholar 

  271. Patsalides A, Knopman J, Santillan A, Tsiouris AJ, Riina H, Gobin YP (2011) Endovascular treatment of spinal arteriovenous lesions: beyond the dural fistula. AJNR Am J Neuroradiol 32(5):798–808. doi:10.3174/ajnr.A2190

    Article  CAS  PubMed  Google Scholar 

  272. Da Costa L, Dehdashti AR, terBrugge KG (2009) Spinal cord vascular shunts: spinal cord vascular malformations and dural arteriovenous fistulas. Neurosurg Focus 26(1):E6. doi:10.3171/FOC.2009.26.1.E6

    Article  PubMed  Google Scholar 

Suggested Reading

  • Krings T, Geibprasert S (2009) Spinal dural arteriovenous fistulas. AJNR Am J Neuroradiol 30(4):639–648

    Article  CAS  PubMed  Google Scholar 

  • Krings T, Lasjaunias PL, Hans FJ et al (2007) Imaging in spinal vascular disease. Neuroimaging Clin N Am 17(1):57–72

    Article  PubMed  Google Scholar 

  • Krishna V, Lazaridis C, Ellegala D et al (2012) Spinal cord infarction associated with subarachnoid hemorrhage. Clin Neurol Neurosurg 114(7):1030–1032

    Article  PubMed Central  PubMed  Google Scholar 

  • Lasjaunias P, Berenstein A, TerBrugge K (2001) Clinical vascular anatomy and variations. In: Surgical neuroangiography, vol 1. Springer, Berlin

    Google Scholar 

  • Nair S, Gobin YP, Leng LZ et al (2013) Preoperative embolization of hypervascular thoracic, lumbar, and sacral spinal column tumors: technique and outcomes from a single center. Interv Neuroradiol 19(3):377–385

    PubMed Central  PubMed  Google Scholar 

  • Patsalides A, Knopman J, Santillan A, Tsiouris AJ, Riina H, Gobin YP (2011) Endovascular treatment of spinal arteriovenous lesions: beyond the dural fistula. AJNR Am J Neuroradiol 32(5):798–808

    Article  CAS  PubMed  Google Scholar 

  • Saindane AM, Boddu SR, Tong FC, Dehkharghani S, Dion JE (2014) Contrast-enhanced time-resolved MRA for pre-angiographic evaluation of suspected spinal dural arterial venous fistulas. J Neurointerv Surg 7:135–140

    Article  PubMed  Google Scholar 

  • Santillan A, Nacarino V, Greenberg E, Riina HA, Gobin YP, Patsalides A (2012) Vascular anatomy of the spinal cord. J Neurointerv Surg 4(1):67–74

    Article  PubMed  Google Scholar 

  • Setacci F, Sirignano P, De Donato G et al (2010) Endovascular thoracic aortic repair and risk of spinal cord ischemia: the role of previous or concomitant treatment for aortic aneurysm. J Cardiovasc Surg (Torino) 51(2):169–176

    CAS  Google Scholar 

  • Thurnher MM, Cartes-Zumelzu F, Mueller-Mang C (2007) Demyelinating and infectious diseases of the spinal cord. Neuroimaging Clin N Am 17(1):37–55

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srikanth R. Boddu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this entry

Cite this entry

Boddu, S.R. et al. (2016). Spinal Cord Infarction and Differential Diagnosis. In: Saba, L., Raz, E. (eds) Neurovascular Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9029-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9029-6_30

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9028-9

  • Online ISBN: 978-1-4614-9029-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics