Skip to main content

Hypoxic–Ischemic Encephalopathy (Preterm, Term, and Adult)

  • Reference work entry
  • First Online:
Neurovascular Imaging

Abstract

Hypoxic–ischemic injury (HII) to the brain is usually a devastating event and an important cause of morbidity and mortality in the United States and elsewhere in the world. Neuroimaging plays a pivotal role in diagnosis, treatment, and long-term prognosis determination for these patients. The correct diagnosis made on the basis of different imaging modalities requires knowledge of the different manifestations of this type of injury. Some of the factors that contribute to the different findings are brain maturity, duration and severity of the insult, underlying cause, and associated disorders.

Severe HII will result in preferentially deep gray matter damage in preterm and term infants, with peri-rolandic involvement more frequently observed in the latter age group. In these patients, a less profound insult will result in germinal matrix hemorrhages or periventricular leukomalacia (PVL) in preterm neonates and parasagittal watershed infarcts in term neonates. In the postnatal period, severe insults produce diffuse gray matter injury, with relative sparing of the peri-rolandic cortex and posterior circulation structures. In older children and adults, profound insults produce injury in the deep gray matter nuclei, cortices, hippocampi, and cerebellum.

The use of advanced MRI techniques such as DWI and MR spectroscopy is useful in making the diagnosis especially in the acute setting where conventional imaging might be less sensitive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dugan LL, Choi DW (1999). Hypoxia-ischemia and brain infarction. In: Siegel GJ, Agranoff BW, Albers RW et al (eds) Basic neurochemistry: molecular, cellular and medical aspects, 6th edn. Lippincott-Raven, Philadelphia. Available from: http://www.ncbi.nlm.nih.gov/books/NBK28046/

  2. Armstrong-Wells J, Bernard TJ, Boada R, Manco-Johnson M (2010) Neurocognitive outcomes following neonatal encephalopathy. NeuroRehabilitation 26(1):27–33. doi:10.3233/NRE-2010-0533

    PubMed  Google Scholar 

  3. Huang BY, Castillo M (2008) Hypoxic-ischemic brain injury: imaging findings from birth to adulthood. Radiographics 28(2):417–439. doi:10.1148/rg.282075066; quiz 617

    Article  PubMed  Google Scholar 

  4. Khurshid F, Lee KS, McNamara P, Whyte H, Mak W (2011) Lessons learned during implementation of therapeutic hypothermia for neonatal hypoxic ischemic encephalopathy in a regional transport program in Ontario. Paediatr Child Health 16(3):153–156

    PubMed Central  PubMed  Google Scholar 

  5. Barkovich AJ, Baranski K, Vigneron D et al (1999) Proton MR spectroscopy for the evaluation of brain injury in asphyxiated, term neonates. AJNR Am J Neuroradiol 20:1399–1405

    CAS  PubMed  Google Scholar 

  6. Grant PE, Yu D (2006) Acute injury to the immature brain with hypoxia with or without hypoperfusion. Radiol Clin North Am 44:63–77, viii

    Article  PubMed  Google Scholar 

  7. Christophe C, Fonteyne C, Ziereisen F et al (2002) Value of MR imaging of the brain in children with hypoxic coma. AJNR Am J Neuroradiol 23:716–723

    PubMed  Google Scholar 

  8. Wijdicks EF, Campeau NG, Miller GM (2001) MR imaging in comatose survivors of cardiac resuscitation. AJNR Am J Neuroradiol 22:1561–1565

    CAS  PubMed  Google Scholar 

  9. Johnston MV, Trescher WH, Ishida A, Nakajima W (2001) Neurobiology of hypoxic-ischemic injury in the developing brain. Pediatr Res 49(6):735–741

    Article  CAS  PubMed  Google Scholar 

  10. Barkovich AJ (2005) Brain and spine injuries in infancy and childhood. In: Barkovich AJ (ed) Pediatric neuroimaging, 4th edn. Lippincott Williams & Wilkins, Philadelphia, pp 190–290

    Google Scholar 

  11. O’Shea TM (2002) Cerebral palsy in very preterm infants: new epidemiological insights. Ment Retard Dev Disabil Res Rev 8:135–145

    Article  PubMed  Google Scholar 

  12. Barkovich AJ, Sargent SK (1995) Profound asphyxia in the premature infant: imaging findings. AJNR Am J Neuroradiol 16:1837–1846

    CAS  PubMed  Google Scholar 

  13. Castillo M (2007) Selective vulnerability and the cerebellum in neonates. AJNR Am J Neuroradiol 28:20–21

    PubMed  Google Scholar 

  14. Chugani HT, Phelps ME, Mazziotta JC (1987) Positron emission tomography study of human brain functional development. Ann Neurol 22:487–497

    Article  CAS  PubMed  Google Scholar 

  15. Hasegawa M, Houdou S, Mito T, Takashima S, Asanuma K, Ohno T (1992) Development of myelination in the human fetal and infant cerebrum: a myelin basic protein immunohistochemical study. Brain Dev 14:16

    Article  Google Scholar 

  16. Whyte HE, Blaser S (2013) Limitations of routine neuroimaging in predicting outcomes of preterm infants. Neuroradiology 55(Suppl 2):3–11. doi:10.1007/s00234-013-1238-6

    Article  PubMed  Google Scholar 

  17. Barkovich AJ, Westmark K, Partridge C, Sola A, Ferriero DM (1995) Perinatal asphyxia: MR findings in the first 10 days. AJNR Am J Neuroradiol 16:427–438

    CAS  PubMed  Google Scholar 

  18. Volpe JJ (1989) Intraventricular hemorrhage in the premature infant: current concepts – I. Ann Neurol 25:3–11

    Article  CAS  PubMed  Google Scholar 

  19. Paneth N, Pinto-Martin J, Gardiner J et al (1993) Incidence and timing of germinal matrix/intraventricular hemorrhage in low birth weight infants. Am J Epidemiol 137:1167–1176

    CAS  PubMed  Google Scholar 

  20. Merrill JD, Piecuch RE, Fell SC, Barkovich AJ, Goldstein RB (1998) A new pattern of cerebellar hemorrhages in preterm infants. Pediatrics 102:E62

    Article  CAS  PubMed  Google Scholar 

  21. Correa F, Enríquez G, Rossello J, Lucaya J et al (2004) Posterior Fontanelle Sonography: An Acoustic Window into the Neonatal Brain. AJNR Am J Neuroradiol 25:1274–1282

    PubMed  Google Scholar 

  22. Ballabh P, Braun A, Nedergaard M (2004) Anatomic analysis of blood vessels in germinal matrix, cerebral cortex, and white matter in developing infants. Pediatr Res 56:117–124

    Article  PubMed  Google Scholar 

  23. Back SA (2006) Perinatal white matter injury: the changing spectrum of pathology and emerging insights into pathogenetic mechanisms. Ment Retard Dev Disabil Res Rev 12(2):129–140

    Article  PubMed  Google Scholar 

  24. Back SA, Luo NL, Borenstein NS, Levine JM, Volpe JJ, Kinney HC (2001) Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J Neurosci 21:1302–1312

    CAS  PubMed  Google Scholar 

  25. Ferriero D, Miller S (2010) Imaging selective vulnerability in the developing nervous system. J Anat 217:429–435. doi:10.1111/j.1469-7580.2010.01226.x

    Article  PubMed Central  PubMed  Google Scholar 

  26. Flodmark O, Lupton B, Li D et al (1989) MR imaging of periventricular leukomalacia in childhood. AJR Am J Roentgenol 152:583–590

    Article  CAS  PubMed  Google Scholar 

  27. Dubowitz LM, Bydder GM, Mushin J (1985) Developmental sequence of periventricular leukomalacia: correlation of US, clinical, and nuclear magnetic resonance functions. Arch Dis Child 60:349–355

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Inder TE, Anderson NJ, Spencer C, Wells S, Volpe JJ (2003) White matter injury in the premature infant: a comparison between serial cranial sonographic and MR findings at term. AJNR Am J Neuroradiol 24:805–809

    PubMed  Google Scholar 

  29. Murgo S, Avni EF, David P, Muller MF, Golzarian J, Balériaux D, Struyven J (1999) Periventricular leukomalacia in premature infants: prognostic role of ultrasonography and MRI. J Radiol 80(7):715–720

    CAS  PubMed  Google Scholar 

  30. Felderhoff-Mueser U, Rutherford MA, Squier WV et al (1999) Relationship between MR imaging and histopathologic findings of the brain in extremely sick preterm infants. AJNR Am J Neuroradiol 20:1349–1357

    CAS  PubMed  Google Scholar 

  31. Barkovich AJ, Truwit CL (1990) Brain damage from perinatal asphyxia: correlation of MR findings with gestational age. AJNR Am J Neuroradiol 11:1087–1096

    CAS  PubMed  Google Scholar 

  32. Vannucci RC, Perlman JM (1997) Interventions for perinatal hypoxic-ischemic encephalopathy. Pediatrics 100:1004–1014

    Article  CAS  PubMed  Google Scholar 

  33. Martinez-Biarge M, Diez-Sebastian J, Wusthoff CJ, Mercuri E, Cowan FM (2013) Antepartum and intrapartum factors preceding neonatal hypoxic-ischemic encephalopathy. Pediatrics 132(4):e952–e959. doi:10.1542/peds.2013-0511

    Article  PubMed  Google Scholar 

  34. Ferriero DM (2004) Neonatal brain injury. N Engl J Med 351:1985–1995

    Article  CAS  PubMed  Google Scholar 

  35. Nelson KB (2002) The epidemiology of cerebral palsy in term infants. Ment Retard Dev Disabil Res Rev 8:146–150

    Article  PubMed  Google Scholar 

  36. Barkovich AJ (1992) MR and CT evaluation of profound neonatal and infantile asphyxia. AJNR Am J Neuroradiol 13:959–972

    CAS  PubMed  Google Scholar 

  37. Blankenberg F, Loh N, Bracci P, D’Arceuil H et al (2000) Sonography, CT, and MR imaging: a prospective comparison of neonates with suspected intracranial ischemia and hemorrhage. AJNR Am J Neuroradiol 21:213–218

    CAS  PubMed  Google Scholar 

  38. Babcock DS, Ball W Jr (1983) Postasphyxial encephalopathy in full-term infants: US diagnosis. Radiology 148:417–423

    Article  CAS  PubMed  Google Scholar 

  39. Hertzberg BS, Pasto ME, Needleman L, Kurtz AB, Rifkin MD (1987) Postasphyxial encephalopathy in term infants: sonographic demonstration of increased echogenicity of the thalamus and basal ganglia. J Ultrasound Med 6:197–202

    CAS  PubMed  Google Scholar 

  40. Connolly B, Kelehan P, O’Brien N et al (1994) The echogenic thalamus in hypoxic ischaemic encephalopathy. Pediatr Radiol 24:268–271

    Article  CAS  PubMed  Google Scholar 

  41. Stark JE, Seibert JJ (1994) Cerebral artery Doppler ultrasonography for prediction of outcome after perinatal asphyxia. J Ultrasound Med 13:595–600

    CAS  PubMed  Google Scholar 

  42. Robertson RL, Ben-Sira L, Barnes PD et al (1999) MR line-scan diffusion-weighted imaging of term neonates with perinatal brain ischemia. AJNR Am J Neuroradiol 20:1658–1660

    CAS  PubMed  Google Scholar 

  43. Dubowitz DJ, Bluml S, Arcinue E, Dietrich RB (1998) MR of hypoxic encephalopathy in children after near drowning: correlation with quantitative proton MR spectroscopy and clinical outcome. AJNR Am J Neuroradiol 19:1617–1627

    CAS  PubMed  Google Scholar 

  44. Harwood-Nash DC (1992) Abuse to the pediatric central nervous system. AJNR Am J Neuroradiol 13:569–575

    CAS  PubMed  Google Scholar 

  45. Bird CR, Drayer BP, Gilles FH (1989) Pathophysiology of “reverse” edema in global cerebral ischemia. AJNR Am J Neuroradiol 10:95–98

    CAS  PubMed  Google Scholar 

  46. Han BK, Towbin RB, De Courten-Myers G, McLaurin R, Ball WS Jr (1989) Reversal sign on CT: effect of anoxic/ischemic cerebral injury in children. AJNR Am J Neuroradiol 10:1191–1198

    CAS  PubMed  Google Scholar 

  47. Arbelaez A, Castillo M, Mukherji S (1999) Diffusion weighted MR imaging of global cerebral anoxia. AJNR Am J Neuroradiol 20:999–1007

    CAS  PubMed  Google Scholar 

  48. Takahashi S, Higano S, Ishii K et al (1993) Hypoxic brain damage: cortical laminar necrosis and delayed changes in white matter at sequential MR imaging. Radiology 189:449–456

    Article  CAS  PubMed  Google Scholar 

  49. Roychowdhury S, Maldjian JA, Galetta SL, Grossman RI (1998) Postanoxic encephalopathy: diffusion MR findings. J Comput Assist Tomogr 22:992–994

    Article  CAS  PubMed  Google Scholar 

  50. Bass E (1985) Cardiopulmonary arrest: pathophysiology and neurologic complications. Ann Intern Med 103:920–927

    Article  CAS  PubMed  Google Scholar 

  51. Salazar R, Dubow J (2012) Delayed posthypoxic leukoencephalopathy following a morphine overdose. J Clin Neurosci 19(7):1060–1062. doi:10.1016/j.jocn.2012.01.001

    Article  CAS  PubMed  Google Scholar 

  52. Kim JH, Chang KH, Song IC et al (2003) Delayed encephalopathy of acute carbon monoxide intoxication: diffusivity of cerebral white matter lesions. AJNR Am J Neuroradiol 24:1592–1597

    PubMed  Google Scholar 

  53. Inagaki T, Ishino H, Seno H, Umegae N, Aoyama T (1997) A long-term follow-up study of serial magnetic resonance images in patients with delayed encephalopathy after acute carbon monoxide poisoning. Psychiatry Clin Neurosci 51:421–423

    Article  CAS  PubMed  Google Scholar 

  54. Hanrahan JD, Sargentoni J, Azzopardi D et al (1996) Cerebral metabolism within 18 hours of birth asphyxia: a proton magnetic resonance spectroscopy study. Pediatr Res 39:584–590

    Article  CAS  PubMed  Google Scholar 

  55. Bertholdo D, Watcharakorn A, Castillo M (2013) Brain proton magnetic resonance spectroscopy: introduction and overview. Neuroimaging Clin N Am 23(3):359–380. doi:10.1016/j.nic.2012.10.002

    Article  PubMed  Google Scholar 

  56. Penrice J, Cady EB, Lorek A et al (1996) Proton magnetic resonance spectroscopy of the brain in normal preterm and term infants, and early changes after perinatal hypoxia-ischemia. Pediatr Res 40:6–14

    Article  CAS  PubMed  Google Scholar 

  57. Leth H, Toft PB, Pryds O, Peitersen B, Lou HC, Henriksen O (1995) Brain lactate in preterm and growth retarded neonates. Acta Paediatr 84:495–499

    Article  CAS  PubMed  Google Scholar 

  58. Groenendaal F, Veenhoven RH, van der Grond J, Jansen GH, Witkamp TD, De Vries LS (1994) Cerebral lactate and N-acetyl-aspartate/choline ratios in asphyxiated full-term neonates demonstrated in vivo using proton magnetic resonance spectroscopy. Pediatr Res 35:148–151

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Castillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this entry

Cite this entry

Castillo, M., Chiang, F. (2016). Hypoxic–Ischemic Encephalopathy (Preterm, Term, and Adult). In: Saba, L., Raz, E. (eds) Neurovascular Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9029-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9029-6_28

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9028-9

  • Online ISBN: 978-1-4614-9029-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics