Skip to main content

The Role of Diagnostic Imaging Techniques for Detection of Extracranial Venous System Abnormalities Associated with Central Nervous System Disorders

  • Reference work entry
  • First Online:
  • 3102 Accesses

Abstract

The extracranial venous system is complex and variable. In the last decade, it has been repeatedly shown that the presence and severity of jugular vein reflux is associated with a number of central nervous system (CNS) disorders such as transient global amnesia, transient monocular blindness, cough headache, primary exertional headache, and more recently Alzheimer’s disease and aging. A newly proposed vascular condition, named chronic cerebrospinal venous insufficiency (CCSVI), has triggered recently intense interest in better understanding the role of extracranial venous abnormalities and their developmental variants. Their relationship to intracranial CNS pathology, especially in patients with multiple sclerosis (MS), is poorly understood at this time. So far there is no established invasive or noninvasive diagnostic imaging modality that can serve as a “gold standard” for the detection of these venous abnormalities/developmental variants. The use of noninvasive diagnostic imaging techniques such as Doppler sonography (DS) remains controversial; however, consensus guidelines and standardized protocols are emerging. The use of magnetic resonance venography (MRV) and phase-contrast imaging is gaining an increasing interest as an alternative noninvasive diagnostic approach. Further, catheter venography (CV) and intravascular ultrasound (IVUS) are becoming important diagnostic tools for confirming the presence and severity of extracranial venous pathology. Most likely, a multimodal imaging approach will ultimately be the most comprehensive means for screening, diagnostic, as well as monitoring purposes. Further research is needed to determine the spectrum and prevalence of these extracranial venous abnormalities/developmental variants and to compare the imaging findings with pathological examinations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Eberhardt RT, Raffetto JD (2005) Chronic venous insufficiency. Circulation 111(18):2398–2409

    Article  PubMed  Google Scholar 

  2. Dolic K, Siddiqui AH, Karmon Y, Marr K, Zivadinov R (2013) The role of noninvasive and invasive diagnostic imaging techniques for detection of extra-cranial venous system anomalies and developmental variants. BMC Med 11:155

    Article  PubMed Central  PubMed  Google Scholar 

  3. Burrows PE, Konez O, Bisdorff A (2003) Venous variations of the brain and cranial vault. Neuroimaging Clin N Am 13(1):13–26

    Article  PubMed  Google Scholar 

  4. Dake MD, Zivadinov R, Haacke EM (2011) Chronic cerebrospinal venous insufficiency in multiple sclerosis: a historical perspective. Funct Neurol 26(4):181–195

    PubMed Central  PubMed  Google Scholar 

  5. Zivadinov R, Chung CP (2013) Potential involvement of the extracranial venous system in central nervous system disorders and aging. BMC Med 11:260

    Article  PubMed Central  PubMed  Google Scholar 

  6. Lee BB, Laredo J, Neville R (2010) Embryological background of truncular venous malformation in the extracranial venous pathways as the cause of chronic cerebro-spinal venous insufficiency. Int Angiol 29:95–108

    PubMed  Google Scholar 

  7. Dolic K, Marr K, Valnarov V et al (2012) Intra- and extraluminal structural and functional venous anomalies in multiple sclerosis, as evidenced by 2 noninvasive imaging techniques. AJNR Am J Neuroradiol 33(1):16–23

    Article  CAS  PubMed  Google Scholar 

  8. Chung CP, Cheng CY, Zivadinov R et al (2013) Jugular venous reflux and plasma endothelin-1 are associated with cough syncope: a case control pilot study. BMC Neurol 13:9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Zivadinov R, Karmon Y, Dolic K et al (2013) Multimodal noninvasive and invasive imaging of extracranial venous abnormalities indicative of CCSVI: results of the PREMiSe pilot study. BMC Neurol 13:151

    Article  PubMed Central  PubMed  Google Scholar 

  10. Chuang YM, Hu HH (2005) Cough headache and thoracic inlet valvular competence in uremia. Eur Neurol 53(2):78–80

    Article  PubMed  Google Scholar 

  11. Chung CP, Hsu HY, Chao AC, Sheng WY, Soong BW, Hu HH (2007) Transient global amnesia: cerebral venous outflow impairment-insight from the abnormal flow patterns of the internal jugular vein. Ultrasound Med Biol 33(11):1727–1735

    Article  PubMed  Google Scholar 

  12. Chung CP, Wang PN, Wu YH et al (2011) More severe white matter changes in the elderly with jugular venous reflux. Ann Neurol 69(3):553–559

    Article  PubMed  Google Scholar 

  13. Zamboni P, Galeotti R, Menegatti E et al (2009) A prospective open-label study of endovascular treatment of chronic cerebrospinal venous insufficiency. J Vasc Surg 50(6):1348–1358, e1-3

    Article  PubMed  Google Scholar 

  14. Zamboni P, Galeotti R, Menegatti E et al (2009) Chronic cerebrospinal venous insufficiency in patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 80(4):392–399

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Al-Omari MH, Al-Bashir A (2012) Internal jugular vein valve morphology in the patients with chronic cerebrospinal venous insufficiency (CCSVI); angiographic findings and schematic demonstrations. Rev Recent Clin Trials 7(2):83–87

    Article  PubMed  Google Scholar 

  16. Haacke EM (2011) Chronic cerebral spinal venous insufficiency in multiple sclerosis. Expert Rev Neurother 11(1):5–9

    Article  PubMed  Google Scholar 

  17. Zamboni P, Menegatti E, Galeotti R et al (2009) The value of cerebral Doppler venous haemodynamics in the assessment of multiple sclerosis. J Neurol Sci 282(1–2):21–27

    Article  PubMed  Google Scholar 

  18. Zamboni P, Morovic S, Menegatti E, Viselner G, Nicolaides AN (2011) Screening for chronic cerebrospinal venous insufficiency (CCSVI) using ultrasound–recommendations for a protocol. Int Angiol 30(6):571–597

    CAS  PubMed  Google Scholar 

  19. Baracchini C, Valdueza JM, Del Sette M et al (2012) CCSVI and MS: a statement from the European Society of neurosonology and cerebral hemodynamics. J Neurol 259(12):2585–2589

    Article  PubMed  Google Scholar 

  20. Mayer CA, Pfeilschifter W, Lorenz MW et al (2011) The perfect crime? CCSVI not leaving a trace in MS. J Neurol Neurosurg Psychiatry 82(4):436–440

    Article  PubMed Central  PubMed  Google Scholar 

  21. Oger J, Alkhawajah M (2010) CCSVI: hope, hype or snake oil? Can J Neurol Sci 37(6):716

    PubMed  Google Scholar 

  22. Nicolaides AN, Morovic S, Menegatti E, Viselner G, Zamboni P (2011) Screening for chronic cerebrospinal venous insufficiency (CCSVI) using ultrasound: recommendations for a protocol. Funct Neurol 26(4):229–248

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Zivadinov R, Bastianello S, Dake M, et al (2014) Recommendations for multimodal noninvasive and invasive screening for detecting extracranial venous abnormalities, indicative of chronic cerebrospinal venous insufficiency (CCSVI). A position statement of International Society for Neurovascular Disease (ISNVD). J Vasc Interv Radiol. Sep 22. pii: S1051–0443(14)00746–5. doi:10.1016/j.jvir.2014.07.024

    Google Scholar 

  24. Van den Berg PJ, Visser LH (2013) The fluctuating natural course of CCSVI in MS patients and controls, a prospective follow-up. PLoS One 8(11):e78166

    Article  PubMed Central  PubMed  Google Scholar 

  25. Cortes Nino Mdel P, Tampieri D, Melancon D (2010) Endovascular venous procedures for multiple sclerosis? Mult Scler 16(7):771–772

    Article  PubMed  Google Scholar 

  26. Mandato KD, Hegener PF, Siskin GP et al (2012) Safety of endovascular treatment of chronic cerebrospinal venous insufficiency: a report of 240 patients with multiple sclerosis. J Vasc Interv Radiol 23(1):55–59

    Article  PubMed  Google Scholar 

  27. Petrov I, Grozdinski L, Kaninski G, Iliev N, Iloska M, Radev A (2011) Safety profile of endovascular treatment for chronic cerebrospinal venous insufficiency in patients with multiple sclerosis. J Endovasc Ther 18(3):314–323

    Article  PubMed  Google Scholar 

  28. Burton JM, Alikhani K, Goyal M et al (2011) Complications in MS patients after CCSVI procedures abroad (Calgary, AB). Can J Neurol Sci 38(5):741–746

    PubMed  Google Scholar 

  29. Valdueza JM, Doepp F, Schreiber SJ et al (2013) What went wrong? The flawed concept of cerebrospinal venous insufficiency. J Cereb Blood Flow Metab 33(5):657–668

    Article  PubMed Central  PubMed  Google Scholar 

  30. Beggs CB (2013) Venous hemodynamics in neurological disorders: an analytical review with hydrodynamic analysis. BMC Med 11:142

    Article  PubMed Central  PubMed  Google Scholar 

  31. Beggs C, Chung CP, Bergsland N et al (2013) Jugular venous reflux and brain parenchyma volumes in elderly patients with mild cognitive impairment and Alzheimer’s disease. BMC Neurol 13:157

    Article  PubMed Central  PubMed  Google Scholar 

  32. Chung CP, Lin YJ, Chao AC et al (2010) Jugular venous hemodynamic changes with aging. Ultrasound Med Biol 36(11):1776–1782

    Article  PubMed  Google Scholar 

  33. Zivadinov R, Marr K, Cutter G et al (2011) Prevalence, sensitivity, and specificity of chronic cerebrospinal venous insufficiency in MS. Neurology 77(2):138–144

    Article  CAS  PubMed  Google Scholar 

  34. Zivadinov R, Lopez-Soriano A, Weinstock-Guttman B et al (2011) Use of MR venography for characterization of the extracranial venous system in patients with multiple sclerosis and healthy control subjects. Radiology 258(2):562–570

    Article  PubMed  Google Scholar 

  35. Doepp F, Schreiber SJ, von Munster T, Rademacher J, Klingebiel R, Valdueza JM (2004) How does the blood leave the brain? A systematic ultrasound analysis of cerebral venous drainage patterns. Neuroradiology 46(7):565–570

    Article  PubMed  Google Scholar 

  36. San Millan Ruiz D, Gailloud P, Rufenacht DA, Delavelle J, Henry F, Fasel JH (2002) The craniocervical venous system in relation to cerebral venous drainage. AJNR Am J Neuroradiol 23(9):1500–1508

    PubMed  Google Scholar 

  37. Meder JF, Chiras J, Roland J, Guinet P, Bracard S, Bargy F (1994) Venous territories of the brain. J Neuroradiol 21(2):118–133

    CAS  PubMed  Google Scholar 

  38. Schaller B (2004) Physiology of cerebral venous blood flow: from experimental data in animals to normal function in humans. Brain Res Brain Res Rev 46(3):243–260

    Article  CAS  PubMed  Google Scholar 

  39. Schmidek HH, Auer LM, Kapp JP (1985) The cerebral venous system. Neurosurgery 17(4):663–678

    Article  CAS  PubMed  Google Scholar 

  40. Caruso RD, Rosenbaum AE, Chang JK, Joy SE (1999) Craniocervical junction venous anatomy on enhanced MR images: the suboccipital cavernous sinus. AJNR Am J Neuroradiol 20(6):1127–1131

    CAS  PubMed  Google Scholar 

  41. Ono M, Rhoton AL Jr, Peace D, Rodriguez RJ (1984) Microsurgical anatomy of the deep venous system of the brain. Neurosurgery 15(5):621–657

    Article  CAS  PubMed  Google Scholar 

  42. Andeweg J (1996) The anatomy of collateral venous flow from the brain and its value in aetiological interpretation of intracranial pathology. Neuroradiology 38(7):621–628

    Article  CAS  PubMed  Google Scholar 

  43. Epstein HM, Linde HW, Crampton AR, Ciric IS, Eckenhoff JE (1970) The vertebral venous plexus as a major cerebral venous outflow tract. Anesthesiology 32(4):332–337

    Article  CAS  PubMed  Google Scholar 

  44. Akkawi NM, Agosti C, Borroni B et al (2002) Jugular valve incompetence: a study using air contrast ultrasonography on a general population. J Ultrasound Med 21(7):747–751

    PubMed  Google Scholar 

  45. Brownlow RL Jr, McKinney WM (1985) Ultrasonic evaluation of jugular venous valve competence. J Ultrasound Med 4(4):169–172

    PubMed  Google Scholar 

  46. Silva MA, Deen KI, Fernando DJ, Sheriffdeen AH (2002) The internal jugular vein valve may have a significant role in the prevention of venous reflux: evidence from live and cadaveric human subjects. Clin Physiol Funct Imaging 22(3):202–205

    Article  CAS  PubMed  Google Scholar 

  47. Fisher J, Vaghaiwalla F, Tsitlik J et al (1982) Determinants and clinical significance of jugular venous valve competence. Circulation 65(1):188–196

    Article  CAS  PubMed  Google Scholar 

  48. Dolic K, Marr K, Valnarov V et al (2011) Sensitivity and specificity for screening of chronic cerebrospinal venous insufficiency using a multimodal non-invasive imaging approach in patients with multiple sclerosis. Funct Neurol 26(4):205–214

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Zamboni P, Galeotti R (2010) The chronic cerebrospinal venous insufficiency syndrome. Phlebology 25(6):269–279

    Article  CAS  PubMed  Google Scholar 

  50. Escott EJ, Branstetter BF (2006) It’s not a cervical lymph node, it’s a vein: CT and MR imaging findings in the veins of the head and neck. Radiographics 26(5):1501–1515

    Article  PubMed  Google Scholar 

  51. Deslaugiers B, Vaysse P, Combes JM et al (1994) Contribution to the study of the tributaries and the termination of the external jugular vein. Surg Radiol Anat 16(2):173–177

    Article  CAS  PubMed  Google Scholar 

  52. Schummer W, Schummer C, Bredle D, Frober R (2004) The anterior jugular venous system: variability and clinical impact. Anesth Analg 99(6):1625–1629

    Article  PubMed  Google Scholar 

  53. Beddy P, Geoghegan T, Ramesh N et al (2006) Valsalva and gravitational variability of the internal jugular vein and common femoral vein: ultrasound assessment. Eur J Radiol 58(2):307–309

    Article  CAS  PubMed  Google Scholar 

  54. Schreiber SJ, Lurtzing F, Gotze R, Doepp F, Klingebiel R, Valdueza JM (2003) Extrajugular pathways of human cerebral venous blood drainage assessed by duplex ultrasound. J Appl Physiol 94(5):1802–1805

    Article  PubMed  Google Scholar 

  55. Traboulsee AL, Knox KB, Machan L et al (2014) Prevalence of extracranial venous narrowing on catheter venography in people with multiple sclerosis, their siblings, and unrelated healthy controls: a blinded, case–control study. Lancet 383(9912):138–145

    Article  PubMed  Google Scholar 

  56. Zivadinov R, Galeotti R, Hojnacki D et al (2011) Value of MR venography for detection of internal jugular vein anomalies in multiple sclerosis: a pilot longitudinal study. AJNR Am J Neuroradiol 32(5):938–946

    Article  CAS  PubMed  Google Scholar 

  57. Meissner MH, Moneta G, Burnand K et al (2007) The hemodynamics and diagnosis of venous disease. J Vasc Surg 46(S):4S–24S

    Article  PubMed  Google Scholar 

  58. Perone N, Bounameaux H, Perrier A (2001) Comparison of four strategies for diagnosing deep vein thrombosis: a cost-effectiveness analysis. Am J Med 110(1):33–40

    Article  CAS  PubMed  Google Scholar 

  59. Goodacre S, Sampson F, Stevenson M et al (2006) Measurement of the clinical and cost-effectiveness of non-invasive diagnostic testing strategies for deep vein thrombosis. Health Technol Assess 10(15):1–168, iii-iv

    Article  CAS  PubMed  Google Scholar 

  60. Kassai B, Boissel JP, Cucherat M, Sonie S, Shah NR, Leizorovicz A (2004) A systematic review of the accuracy of ultrasound in the diagnosis of deep venous thrombosis in asymptomatic patients. Thromb Haemost 91(4):655–666

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Chung CP, Beggs C, Wang PN et al (2014) Jugular venous reflux and white matter abnormalities in Alzheimer’s disease: a pilot study. J Alzheimers Dis 39(3):601–609

    PubMed  Google Scholar 

  62. Zamboni P, Consorti G, Galeotti R et al (2009) Venous collateral circulation of the extracranial cerebrospinal outflow routes. Curr Neurovasc Res 6(3):204–212

    Article  PubMed  Google Scholar 

  63. Lugli M, Morelli M, Guerzoni S, Maleti O (2012) The hypothesis of patho-physiological correlation between chronic cerebrospinal venous insufficiency and multiple sclerosis: rationale of treatment. Phlebology 27(Suppl 1):178–186

    Article  PubMed  Google Scholar 

  64. Monti L, Menci E, Piu P et al (2014) A sonographic quantitative cutoff value of cerebral venous outflow in neurologic diseases: a blinded study of 115 subjects. AJNR Am J Neuroradiol Jul;35(7):1381–6. doi:10.3174/ajnr.A3864. Epub 2014 Mar 7

    Google Scholar 

  65. Monti L, Menci E, Ulivelli M et al (2011) Quantitative Colour Doppler Sonography evaluation of cerebral venous outflow: a comparative study between patients with multiple sclerosis and controls. PLoS One 6(9):e25012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Ciccone MM, Galeandro AI, Scicchitano P et al (2012) Multigate quality Doppler profiles and morphological/hemodynamic alterations in multiple sclerosis patients. Curr Neurovasc Res 9(2):120–127

    Article  PubMed  Google Scholar 

  67. Comi G, Battaglia MA, Bertolotto A et al (2013) Italian multicentre observational study of the prevalence of CCSVI in multiple sclerosis (CoSMo study): rationale, design, and methodology. Neurol Sci 34(8):1297–1307

    Article  PubMed Central  PubMed  Google Scholar 

  68. Mancini M, Morra VB, Di Donato O et al (2012) Multiple sclerosis: cerebral circulation time. Radiology 262(3):947–955

    Article  PubMed  Google Scholar 

  69. Shalhoub J, Owen DR, Gauthier T, Monaco C, Leen EL, Davies AH (2010) The use of contrast enhanced ultrasound in carotid arterial disease. Eur J Vasc Endovasc Surg 39(4):381–387

    Article  CAS  PubMed  Google Scholar 

  70. Staub D, Partovi S, Imfeld S et al (2013) Novel applications of contrast-enhanced ultrasound imaging in vascular medicine. Vasa 42(1):17–31

    Article  PubMed  Google Scholar 

  71. Thapar A, Lane T, Nicholas R et al (2011) Systematic review of sonographic chronic cerebrospinal venous insufficiency findings in multiple sclerosis. Phlebology 26(8):319–325

    Article  CAS  PubMed  Google Scholar 

  72. Doepp F, Paul F, Valdueza JM, Schmierer K, Schreiber SJ (2010) No cerebrocervical venous congestion in patients with multiple sclerosis. Ann Neurol 68(2):173–183

    PubMed  Google Scholar 

  73. Menegatti E, Genova V, Tessari M et al (2010) The reproducibility of colour Doppler in chronic cerebrospinal venous insufficiency associated with multiple sclerosis. Int Angiol 29(2):121–126

    CAS  PubMed  Google Scholar 

  74. McDonald S, Iceton JB (2012) The use of Doppler ultrasound in the diagnosis of chronic cerebrospinal venous insufficiency. Tech Vasc Interv Radiol 15(2):113–120

    Article  PubMed  Google Scholar 

  75. Zaniewski M, Kostecki J, Kuczmik W et al (2013) Neck duplex Doppler ultrasound evaluation for assessing chronic cerebrospinal venous insufficiency in multiple sclerosis patients. Phlebology 28(1):24–31

    CAS  PubMed  Google Scholar 

  76. Prince MR, Sostman HD (2003) MR venography: unsung and underutilized. Radiology 226(3):630–632

    Article  PubMed  Google Scholar 

  77. Vogt FM, Herborn CU, Goyen M (2005) MR venography. Magn Reson Imaging Clin N Am 13(1):113–129, vi

    Article  PubMed  Google Scholar 

  78. Zaharchuk G, Fischbein NJ, Rosenberg J, Herfkens RJ, Dake MD (2011) Comparison of MR and contrast venography of the cervical venous system in multiple sclerosis. AJNR Am J Neuroradiol 32(8):1482–1489

    Article  CAS  PubMed  Google Scholar 

  79. Hope MD, Purcell DD, Hope TA et al (2009) Complete intracranial arterial and venous blood flow evaluation with 4D flow MR imaging. AJNR Am J Neuroradiol 30(2):362–366

    Article  CAS  PubMed  Google Scholar 

  80. Neglen P, Raju S (2002) Intravascular ultrasound scan evaluation of the obstructed vein. J Vasc Surg 35(4):694–700

    Article  PubMed  Google Scholar 

  81. Finet G, Maurincomme E, Tabib A et al (1993) Artifacts in intravascular ultrasound imaging: analyses and implications. Ultrasound Med Biol 19(7):533–547

    Article  CAS  PubMed  Google Scholar 

  82. Kanne JP, Lalani TA (2004) Role of computed tomography and magnetic resonance imaging for deep venous thrombosis and pulmonary embolism. Circulation 109(12 Suppl 1):I15–I21

    Article  PubMed  Google Scholar 

  83. Doepp F, Wurfel JT, Pfueller CF et al (2011) Venous drainage in multiple sclerosis: a combined MRI and ultrasound study. Neurology 77(19):1745–1751

    Article  CAS  PubMed  Google Scholar 

  84. Haacke EM, Feng W, Utriainen D et al (2012) Patients with multiple sclerosis with structural venous abnormalities on MR imaging exhibit an abnormal flow distribution of the internal jugular veins. J Vasc Interv Radiol 23(1):60–68, e1-3

    Article  PubMed  Google Scholar 

  85. Hojnacki D, Zamboni P, Lopez-Soriano A et al (2010) Use of neck magnetic resonance venography, Doppler sonography and selective venography for diagnosis of chronic cerebrospinal venous insufficiency: a pilot study in multiple sclerosis patients and healthy controls. Int Angiol 29(2):127–139

    CAS  PubMed  Google Scholar 

  86. Utriainen D, Trifan G, Sethi S et al (2012) Magnetic resonance imaging signatures of vascular pathology in multiple sclerosis. Neurol Res 34(8):780–792

    Article  PubMed  Google Scholar 

  87. Utriainen D, Feng W, Elias S, Latif Z, Hubbard D, Haacke EM (2012) Using magnetic resonance imaging as a means to study chronic cerebral spinal venous insufficiency in multiple sclerosis patients. Tech Vasc Interv Radiol 15(2):101–112

    Article  PubMed  Google Scholar 

  88. Wattjes MP, van Oosten BW, de Graaf WL et al (2011) No association of abnormal cranial venous drainage with multiple sclerosis: a magnetic resonance venography and flow-quantification study. J Neurol Neurosurg Psychiatry 82(4):429–435

    Article  PubMed  Google Scholar 

  89. Heijboer H, Buller HR, Lensing AW, Turpie AG, Colly LP, ten Cate JW (1993) A comparison of real-time compression ultrasonography with impedance plethysmography for the diagnosis of deep-vein thrombosis in symptomatic outpatients. N Engl J Med 329(19):1365–1369

    Article  CAS  PubMed  Google Scholar 

  90. Rosales M, Radeva P, Rodriguez-Leor O, Gil D (2009) Modelling of image-catheter motion for 3-D IVUS. Med Image Anal 13(1):91–104

    Article  PubMed  Google Scholar 

  91. Ayanzen RH, Bird CR, Keller PJ, McCully FJ, Theobald MR, Heiserman JE (2000) Cerebral MR venography: normal anatomy and potential diagnostic pitfalls. AJNR Am J Neuroradiol 21(1):74–78

    CAS  PubMed  Google Scholar 

  92. Feng W, Utriainen D, Trifan G, Sethi S, Hubbard D, Haacke EM (2012) Quantitative flow measurements in the internal jugular veins of multiple sclerosis patients using magnetic resonance imaging. Rev Recent Clin Trials 7(2):117–126

    Article  PubMed  Google Scholar 

  93. Alperin N, Hushek SG, Lee SH, Sivaramakrishnan A, Lichtor T (2005) MRI study of cerebral blood flow and CSF flow dynamics in an upright posture: the effect of posture on the intracranial compliance and pressure. Acta Neurochir Suppl 95:177–181

    Article  CAS  PubMed  Google Scholar 

  94. Stoquart-Elsankari S, Lehmann P, Villette A et al (2009) A phase-contrast MRI study of physiologic cerebral venous flow. J Cereb Blood Flow Metab 29(6):1208–1215

    Article  PubMed  Google Scholar 

  95. Sundstrom P, Wahlin A, Ambarki K, Birgander R, Eklund A, Malm J (2010) Venous and cerebrospinal fluid flow in multiple sclerosis: a case–control study. Ann Neurol 68(2):255–259

    Article  PubMed  Google Scholar 

  96. Macgowan CK, Chan KY, Laughlin S, Marrie RA, Banwell B (2014) Cerebral arterial and venous blood flow in adolescent multiple sclerosis patients and age-matched controls using phase contrast MRI. J Magn Reson Imaging Aug;40(2):341–7. doi:10.1002/jmri.24388.

    Google Scholar 

  97. Farb RI, Scott JN, Willinsky RA, Montanera WJ, Wright GA, terBrugge KG (2003) Intracranial venous system: gadolinium-enhanced three-dimensional MR venography with auto-triggered elliptic centric-ordered sequence–initial experience. Radiology 226(1):203–209

    Article  PubMed  Google Scholar 

  98. Liang L, Korogi Y, Sugahara T et al (2001) Evaluation of the intracranial dural sinuses with a 3D contrast-enhanced MP-RAGE sequence: prospective comparison with 2D-TOF MR venography and digital subtraction angiography. AJNR Am J Neuroradiol 22(3):481–492

    CAS  PubMed  Google Scholar 

  99. Hingwala DR, Thomas B, Kesavadas C, Kapilamoorthy TR (2011) Suboptimal contrast opacification of dynamic head and neck MR angiography due to venous stasis and reflux: technical considerations for optimization. AJNR Am J Neuroradiol 32(2):310–314

    Article  CAS  PubMed  Google Scholar 

  100. Zivadinov R, Ramanathan M, Dolic K et al (2011) Chronic cerebrospinal venous insufficiency in multiple sclerosis: diagnostic, pathogenetic, clinical and treatment perspectives. Expert Rev Neurother 11(9):1277–1294

    Article  PubMed  Google Scholar 

  101. Hom JJ, Ordovas K, Reddy GP (2008) Velocity-encoded cine MR imaging in aortic coarctation: functional assessment of hemodynamic events. Radiographics 28(2):407–416

    Article  PubMed  Google Scholar 

  102. Glockner J (2010) Magnetic resonance venography. Appl Radiol 39(6):36

    Google Scholar 

  103. Hartel M, Kluczewska E, Simka M, Ludyga T, Kostecki J, Zaniewski M (2011) Magnetic resonance venography of chronic cerebrospinal venous insufficiency in patients with associated multiple sclerosis. Pol J Radiol 76(1):59–62

    PubMed Central  PubMed  Google Scholar 

  104. Niggemann P, Seifert M, Forg A, Schild HH, Urbach H, Krings T (2012) Positional venous MR angiography: an operator-independent tool to evaluate cerebral venous outflow hemodynamics. AJNR Am J Neuroradiol 33(2):246–251

    Article  CAS  PubMed  Google Scholar 

  105. Siddiqui AH, Zivadinov R, Benedict RH et al (2014) Prospective randomized trial of venous angioplasty in MS (PREMiSe). Neurology Jul 29;83(5):441–9. doi:10.1212/WNL.0000000000000638

    Google Scholar 

  106. Higashi Y, Yoshizumi M (2003) New methods to evaluate endothelial function: method for assessing endothelial function in humans using a strain-gauge plethysmography: nitric oxide-dependent and -independent vasodilation. J Pharmacol Sci 93(4):399–404

    Article  CAS  PubMed  Google Scholar 

  107. Janssen MC, Wollersheim H, Haenen JH, van Asten WN, Thien T (1998) Deep venous thrombosis: a prospective 3-month follow-up using duplex scanning and strain-gauge plethysmography. Clin Sci 94(6):651–656

    Article  CAS  PubMed  Google Scholar 

  108. Locker T, Goodacre S, Sampson F, Webster A, Sutton AJ (2006) Meta-analysis of plethysmography and rheography in the diagnosis of deep vein thrombosis. Emerg Med J 23(8):630–635

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Zamboni P, Menegatti E, Conforti P, Shepherd S, Tessari M, Beggs C (2012) Assessment of cerebral venous return by a novel plethysmography method. J Vasc Surg 56(3):677–685, e1

    Article  PubMed  Google Scholar 

  110. Beggs C, Shepherd S, Zamboni P (2014) Cerebral venous outflow resistance and interpretation of cervical plethysmography data with respect to the diagnosis of chronic cerebrospinal venous insufficiency. Phlebology 29(3):191–199

    CAS  PubMed  Google Scholar 

  111. Viola S, Viola P, Fiorelli L, Buongarzone M, Litterio P (2013) Transcranial brain photoplethysmography to study the venules of cerebral cortex in patients with multiple sclerosis. Phlebology. Dec 13. [Epub ahead of print]

    Google Scholar 

  112. Ludyga T, Kazibudzki M, Simka M et al (2010) Endovascular treatment for chronic cerebrospinal venous insufficiency: is the procedure safe? Phlebology 25(6):286–295

    Article  CAS  PubMed  Google Scholar 

  113. Simka M (2011) Commentary: Safety of endovascular treatment for CCSVI and future perspectives. J Endovasc Ther 18(3):326–327

    Article  PubMed  Google Scholar 

  114. Werner JD, Siskin GP, Mandato K, Englander M, Herr A (2011) Review of venous anatomy for venographic interpretation in chronic cerebrospinal venous insufficiency. J Vasc Interv Radiol 22(12):1681–1690; quiz 91

    Article  PubMed  Google Scholar 

  115. Zivadinov R, Weinstock-Guttman B (2012) Role of venoplasty for treatment of multiple sclerosis: value of open-label studies and surrogate treatment outcomes. J Vasc Interv Radiol 23(10):1308–1310

    Article  PubMed  Google Scholar 

  116. Karmon Y, Zivadinov R, Weinstock-Guttman B et al (2013) Comparison of intravascular ultrasound with conventional venography for detection of extracranial venous abnormalities indicative of chronic cerebrospinal venous insufficiency. J Vasc Interv Radiol 24(10):1487–1498, e1

    Article  PubMed  Google Scholar 

  117. Veroux P, Giaquinta A, Perricone D et al (2013) Internal jugular veins out flow in patients with multiple sclerosis:a catheter venography study. J Vasc Interv Radiol 24(12):1790–1797

    Article  PubMed  Google Scholar 

  118. Simka M, Latacz P, Ludyga T et al (2011) Prevalence of extracranial venous abnormalities: results from a sample of 586 multiple sclerosis patients. Funct Neurol 26(4):197–203

    PubMed Central  CAS  PubMed  Google Scholar 

  119. Nissen SE, Yock P (2001) Intravascular ultrasound: novel pathophysiological insights and current clinical applications. Circulation 103(4):604–616

    Article  CAS  PubMed  Google Scholar 

  120. Mintz GS, Popma JJ, Pichard AD et al (1996) Intravascular ultrasound predictors of restenosis after percutaneous transcatheter coronary revascularization. J Am Coll Cardiol 27(7):1678–1687

    Article  CAS  PubMed  Google Scholar 

  121. Miskolczi L, Guterman LR, Flaherty JD, Hopkins LN (1996) Depiction of carotid plaque ulceration and other plaque-related disorders by intravascular sonography: a flow chamber study. AJNR Am J Neuroradiol 17(10):1881–1890

    CAS  PubMed  Google Scholar 

  122. Potkin BN, Bartorelli AL, Gessert JM et al (1990) Coronary artery imaging with intravascular high-frequency ultrasound. Circulation 81(5):1575–1585

    Article  CAS  PubMed  Google Scholar 

  123. Reid DB (1996) Intravenous IVUS: room with a view. J Endovasc Ther 3(4):435

    Article  CAS  Google Scholar 

  124. Reid DB, Diethrich EB, Marx P, Wrasper R (1996) Intravascular ultrasound assessment in carotid interventions. J Endovasc Ther 3(2):203–210

    Article  CAS  Google Scholar 

  125. Reid DB, Douglas M, Diethrich EB (1995) The clinical value of three-dimensional intravascular ultrasound imaging. J Endovasc Ther 2(4):356–364

    Article  CAS  Google Scholar 

  126. Scalise F, Farina M, Manfredi M, Auguadro C, Novelli E (2013) Assessment of jugular endovascular malformations in chronic cerebrospinal venous insufficiency: colour-doppler scanning and catheter venography compared with intravascular ultrasound. Phlebology 28(8):409–417

    Article  CAS  PubMed  Google Scholar 

  127. Sclafani SJ (2012) Intravascular ultrasound in the diagnosis and treatment of chronic cerebrospinal venous insufficiency. Tech Vasc Interv Radiol 15(2):131–143

    Article  PubMed  Google Scholar 

  128. Baracchini C, Perini P, Calabrese M, Causin F, Rinaldi F, Gallo P (2011) No evidence of chronic cerebrospinal venous insufficiency at multiple sclerosis onset. Ann Neurol 69(1):90–99

    Article  PubMed  Google Scholar 

  129. Baracchini C, Perini P, Causin F, Calabrese M, Rinaldi F, Gallo P (2011) Progressive multiple sclerosis is not associated with chronic cerebrospinal venous insufficiency. Neurology 77(9):844–850

    Article  CAS  PubMed  Google Scholar 

  130. Simka M, Ludyga T, Latacz P, Kazibudzki M (2013) Diagnostic accuracy of current sonographic criteria for the detection of outflow abnormalities in the internal jugular veins. Phlebology 28(6):285–292

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kresimir Dolic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this entry

Cite this entry

Dolic, K., Zivadinov, R. (2016). The Role of Diagnostic Imaging Techniques for Detection of Extracranial Venous System Abnormalities Associated with Central Nervous System Disorders. In: Saba, L., Raz, E. (eds) Neurovascular Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9029-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9029-6_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9028-9

  • Online ISBN: 978-1-4614-9029-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics