Skip to main content

Microstructural Behavior and Fracture in Crystalline Materials: Overview

  • 252 Accesses

Abstract

A dislocation-density-based multiple-slip crystalline plasticity framework, which accounts for variant morphologies and orientation relationships (ORs) that are uniquely inherent to lath martensitic microstructures, and a dislocation-density grain-boundary (GB) interaction scheme, which is based on dislocation-density transmission and blockage at variant boundaries, are developed and used to predict stress accumulation or relaxation at the variant interfaces. A microstructural failure criterion, which is based on resolving these stresses on martensitic cleavage planes, and specialized finite-element (FE) methodologies using overlapping elements to represent evolving fracture surfaces are used for a detailed analysis of fracture nucleation and intergranular and transgranular crack growth in martensitic steels. The effects of block and packet boundaries are investigated, and the results indicate that the orientation of the cleavage planes in relation to the slip planes and the lath morphology are the dominant factors that characterize specific failure modes. The block and packet sizes along the lath long direction are the key microstructural features that affect toughening mechanisms, such as crack arrest and deflection, and these mechanisms can be used to control the nucleation and propagation of different failure modes.

Keywords

  • Slip System
  • Cleavage Plane
  • Martensitic Steel
  • Nominal Strain
  • Active Slip System

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

References

  • R.J. Asaro, J.R. Rice, Strain localization in ductile single-crystals. J. Mech. Phys. Solids 25, 309–338 (1977)

    CrossRef  MATH  Google Scholar 

  • M. Ayada, M. Yuga, N. Tsuji, Y. Saito, A. Yoneguti, Effect of vanadium and niobium on restoration behavior after hot deformation in medium carbon spring steels. ISIJ Int. 38, 1022–1031 (1998)

    CrossRef  Google Scholar 

  • A.A. Barani, F. Li, P. Romano, D. Ponge, D. Raabe, Design of high-strength steels by microalloying and thermomechanical treatment. Mater. Sci. Eng. A 463, 138–146 (2007)

    CrossRef  Google Scholar 

  • M. de Koning, R. Miller, V.V. Bulatov, F. Abraham, Modelling grain-boundary resistance in intergranular slip transmission. Philos. Mag. A 82, 2511–2527 (2002)

    CrossRef  Google Scholar 

  • B. Devincre, T. Hoc, L. Kubin, Dislocation mean free paths and strain hardening of crystals. Science 320, 1745–1748 (2008)

    CrossRef  Google Scholar 

  • B. Dodd, Y. Bai, Width of adiabatic shear bands. Mater. Sci. Tech. 1, 38–40 (1985)

    CrossRef  Google Scholar 

  • P. Franciosi, M. Berveiller, A. Zaoui, Latent hardening in copper and aluminum single-crystals. Acta Metall. 28, 273–283 (1980)

    CrossRef  Google Scholar 

  • Z. Guo, C.S. Lee, J.W. Morris, On coherent transformations in steel. Acta Mater. 52, 5511–5518 (2004)

    CrossRef  Google Scholar 

  • A. Hansbo, P. Hansbo, A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput. Methods Appl. Mech. Eng. 193, 3523–3540 (2004)

    CrossRef  MATH  MathSciNet  Google Scholar 

  • T. Hatem, M.A. Zikry, Shear pipe effects and dynamic shear–strain localization in martensitic steels. Acta Mater. 57, 4558–4567 (2009)

    CrossRef  Google Scholar 

  • A.A. Howe, Ultrafine grained steels: industrial prospects. Mater. Sci. Tech. 16, 1264–1266 (2000)

    CrossRef  Google Scholar 

  • G.M. Hughes, G.E. Smith, A.G. Crocker, P.E.J. Flewitt, An experimental and modelling study of brittle cleavage crack propagation in transformable ferritic steel. Mater. Sci. Tech. 27, 767–773 (2011)

    CrossRef  Google Scholar 

  • T. Inoue, S. Matsuda, Y. Okamura, K. Aoki, Fracture of a low carbon tempered martensite. Trans. Jpn. Inst. Metals 11, 36–43 (1970)

    CrossRef  Google Scholar 

  • S. Jin, J.W. Morris, V.F. Zackay, Grain refinement through thermal cycling in an Fe–Ni–Ti cryogenic alloy. Met Trans. 6A, 141–149 (1975)

    CrossRef  Google Scholar 

  • H. Kawata, K. Sakamoto, T. Moritani, S. Morito, T. Furuhara, T. Maki, Crystallography of ausformed upper bainite structure in Fe–9Ni–C alloys. Mater. Sci. Eng. A 438, 140–144 (2006)

    CrossRef  Google Scholar 

  • H.J. Kim, Y.H. Kim, J.W. Morris, Thermal mechanisms of grain and packet refinement in a lath martensitic steel. ISIJ Int. 38, 1277–1285 (1998)

    CrossRef  Google Scholar 

  • Y. Kimura, T. Inoue, F. Yin, K. Tsuzaki, Inverse temperature dependence of toughness in an ultrafine grain-structure steel. Science 320, 1057–1060 (2008)

    CrossRef  Google Scholar 

  • G. Krauss, Martensite in steel: strength and structure. Mater. Sci. Eng. A 273–275, 40–57 (1999)

    CrossRef  Google Scholar 

  • L. Kubin, B. Devincre, T. Hoc, Towards a physical model for strain hardening in fcc crystals. Mater. Sci. Eng. A 483–484, 19–24 (2008a)

    CrossRef  Google Scholar 

  • L. Kubin, B. Devincre, T. Hoc, Modeling dislocation storage rates and mean free paths in face-centered cubic crystals. Acta Mater. 56, 6040–6049 (2008b)

    CrossRef  Google Scholar 

  • T.C. Lee, I.M. Robertson, H.K. Birnbaim, An in situ transmission electron-microscope deformation study of the slip transfer mechanisms in metals. Metall. Trans. A 21, 2437–2447 (1990)

    CrossRef  Google Scholar 

  • A. Ma, F. Roter, D. Raabe, Studying the effect of grain boundaries in dislocation density based crystal-plasticity finite element simulations. Int. J. Solids Struct. 43, 7287–7303 (2006)

    CrossRef  MATH  Google Scholar 

  • R. Madec, L.P. Kubin, Second order junctions and strain hardening in bcc and fcc crystals. Scripta Mater. 58, 767–770 (2008)

    CrossRef  Google Scholar 

  • T. Maki, K. Tsuzaki, I. Tamura, The morphology of microstructure composed of lath martensites in steels. Trans. Iron Steel Inst. Jpn. 20, 207 (1980)

    Google Scholar 

  • S. Matsuda, Y. Okamura, T. Inoue, H. Mimura, Toughness and effective grain-size in heat-treated low-alloy high-strength steels. Trans. Iron Steel Inst. Jpn. 12, 325–333 (1972)

    Google Scholar 

  • K. Minaar, M. Zhou, An analysis of the dynamic shear failure resistance of structural metals. J. Mech. Phys. Solids 46, 2155–2170 (1998)

    CrossRef  Google Scholar 

  • S. Morito, H. Tanaka, R. Konoshi, T. Furuhara, T. Maki, The morphology and crystallography of lath martensite in Fe–C alloys. Acta Mater. 51, 1789–1799 (2003)

    CrossRef  Google Scholar 

  • S. Morito, X. Huang, T. Furuhara, T. Maki, N. Hansen, The morphology and crystallography of lath martensite in alloy steels. Acta Mater. 54, 5323–5331 (2006)

    CrossRef  Google Scholar 

  • J.W. Morris, On the ductile–brittle transition in lath martensitic steel. ISIJ Int. 51, 1569–1575 (2011)

    CrossRef  Google Scholar 

  • J.W. Morris, Z. Guo, C.R. Krenn, Y.H. Kim, The limits of strength and toughness in steel. ISIJ Int. 41, 599–611 (2011)

    CrossRef  Google Scholar 

  • T. Ohmura, K. Tsuzaki, Plasticity initiation and subsequent deformation behavior in the vicinity of single grain boundary investigated through nanoindentation technique. J. Mater. Res. 42, 1728–1732 (2007)

    Google Scholar 

  • T. Ohmura, A.M. Minor, E.A. Starch, J.W. Morris, Dislocation-grain boundary interactions in martensitic steel observed through in situ nanoindentation in a transmission electron microscope. J. Mater. Res. 12, 3626–3632 (2004)

    CrossRef  Google Scholar 

  • S. Queyreau, G. Monnet, B. Devincre, Slip systems interactions in alpha-iron determined by dislocation dynamics simulations. Int. J. Plast. 25, 361–377 (2009)

    CrossRef  MATH  Google Scholar 

  • P. Shanthraj, M.A. Zikry, Dislocation density evolution and interactions in crystalline materials. Acta Mater. 59, 7695–7702 (2011)

    CrossRef  Google Scholar 

  • P. Shanthraj, M.A. Zikry, Dislocation-density mechanisms for void interactions in crystalline materials. Int. J. Plast. 34, 154–163 (2012a)

    CrossRef  Google Scholar 

  • P. Shanthraj, M.A. Zikry, Optimal microstructures for martensitic steels. J. Mater. Res. 27, 1598–1611 (2012b)

    CrossRef  Google Scholar 

  • A. Shibata, T. Nagoshi, M. Sone, S. Morito, Y. Higo, Evaluation of the block boundary and sub-block boundary strengths of ferrous lath martensite using a micro-bending test. Mater. Sci. Eng. A 29, 7538–7544 (2010)

    CrossRef  Google Scholar 

  • R. Song, D. Ponge, D. Raabe, Mechanical properties of an ultrafine grained C–Mn steel processed by warm deformation and annealing. Acta Mater. 53, 4881–4892 (2005)

    CrossRef  Google Scholar 

  • J.H. Song, M.A. Areias Pedro, T. Belytschko, A method for dynamic crack and shear band propagation with phantom nodes. Int. J. Numer. Methods Eng. 67, 868–893 (2006)

    CrossRef  MATH  Google Scholar 

  • S. Takaki, K. Kawasaki, Y. Kimura, Mechanical properties of ultra fine grains steels. J. Mater. Process. Technol. 117, 359–363 (2001)

    CrossRef  Google Scholar 

  • N. Tsuji, Y. Ito, Y. Saito, Y. Minamino, Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing. Scripta Mater. 47, 893–899 (2002)

    CrossRef  Google Scholar 

  • N. Tsuji, Y. Ito, Y. Saito, Y. Minamino, Toughness of ultrafine grained ferritic steels fabricated by ARB and annealing process. Mater. Trans. 45, 2272–2281 (2004)

    CrossRef  Google Scholar 

  • N. Tsuji, N. Kamikawa, R. Ueji, N. Takata, H. Koyama, D. Terada, Managing both strength and ductility in ultrafine grained steels. ISIJ int. 48, 1114–1121 (2008)

    CrossRef  Google Scholar 

  • M.A. Zikry, An accurate and stable algorithm for high strain-rate finite strain plasticity. Comput. Struct. 50, 337–350 (1994)

    CrossRef  MATH  Google Scholar 

  • M.A. Zikry, M. Kao, Inelastic microstructural failure mechanisms in crystalline materials with high angle grain boundaries. J. Mech. Phys. Solids 44, 1765–1798 (1996)

    CrossRef  Google Scholar 

Download references

Acknowledgments

Support from both the US Office of Naval Research Multi-Disciplinary University Research Initiative on Sound and Electromagnetic Interacting Waves under grant number N00014-10-1-0958 and from the Office of Naval Research under grant number10848631 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratheek Shanthraj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Shanthraj, P., Zikry, M.A. (2013). Microstructural Behavior and Fracture in Crystalline Materials: Overview. In: Voyiadjis, G. (eds) Handbook of Damage Mechanics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8968-9_8-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8968-9_8-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-8968-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering