Encyclopedia of Malaria

Living Edition
| Editors: Peter G. Kremsner, Sanjeev Krishna

Translation and Its Control

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8757-9_75-1

Synonyms

Definition

Translation is the process of protein synthesis. The information encoded by a messenger RNA in the form of triplet codons is read and used to build a growing amino acid chain by the ribosome – a large ribonucleoprotein containing RNA and protein constituents; the individual amino acids during protein synthesis are provided by transfer RNAs. In eukaryotic cells like the protozoan Plasmodium, protein translation takes place in the cytosol. It is foremost dependent on the availability of mRNA templates previously transcribed in the nucleus but can also be regulated at the RNA level and globally in processes referred to as posttranscriptional gene regulation.

Introduction

The unicellular malaria parasite has a complex life cycle. Humans become infected during the bite of a mosquito when sporozoites are injected into the skin. After reaching a blood vessel, they are transported to the liver. Here the initial...

Keywords

Protein Translation Translational Repression Signal Recognition Particle Stress Granule External Transcribe Spacer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. Aly AS, Mikolajczak SA, Rivera HS, Camargo N, Jacobs-Lorena V, Labaied M, Coppens I, Kappe SH. Targeted deletion of SAP1 abolishes the expression of infectivity factors necessary for successful malaria parasite liver infection. Mol Microbiol. 2008;69(1):152–63.PubMedCentralPubMedCrossRefGoogle Scholar
  2. Aly AS, Lindner SE, MacKellar DC, Peng X, Kappe SH. SAP1 is a critical post-transcriptional regulator of infectivity in malaria parasite sporozoite stages. Mol Microbiol. 2011;79(4):929–39.PubMedCrossRefGoogle Scholar
  3. Amulic B, Salanti A, Lavstsen T, Nielsen MA, Deitsch KW. An upstream open reading frame controls translation of var2csa, a gene implicated in placental malaria. PLoS Pathog. 2009;5(1):e1000256.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Anderson P, Kedersha N. Stress granules. Curr Biol. 2009;19(10):R397–8.PubMedCrossRefGoogle Scholar
  5. Ast T, Cohen G, Schuldiner M. A network of cytosolic factors targets SRP-independent proteins to the endoplasmic reticulum. Cell. 2013;152(5):1134–45.PubMedCrossRefGoogle Scholar
  6. Babbitt SE, Altenhofen L, Cobbold SA, Istvan ES, Fennell C, Doerig C, Llinas M, Goldberg DE. Plasmodium falciparum responds to amino acid starvation by entering into a hibernatory state. Proc Natl Acad Sci U S A. 2012;109(47):E3278–87.PubMedCentralPubMedCrossRefGoogle Scholar
  7. Bancells C, Deitsch KW. A molecular switch in the efficiency of translation reinitiation controls expression of var2csa, a gene implicated in pregnancy associated malaria. Mol Microbiol. 2013;90(3):472–88. doi:10.1111/mmi.12379.PubMedCrossRefGoogle Scholar
  8. Barnard DC, Cao Q, Richter JD. Differential phosphorylation controls Maskin association with eukaryotic translation initiation factor 4E and localization on the mitotic apparatus. Mol Cell Biol. 2005;25(17):7605–15.PubMedCentralPubMedCrossRefGoogle Scholar
  9. Baum J, Gilberger TW, Frischknecht F, Meissner M. Host-cell invasion by malaria parasites: insights from Plasmodium and Toxoplasma. Trends Parasitol. 2008;24(12):557–63.PubMedCrossRefGoogle Scholar
  10. Baum J, Papenfuss AT, Mair GR, Janse CJ, Vlachou D, Waters AP, Cowman AF, Crabb BS, de Koning-Ward TF. Molecular genetics and comparative genomics reveal RNAi is not functional in malaria parasites. Nucleic Acids Res. 2009;37(11):3788–98.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Bhatt TK, Kapil C, Khan S, Jairajpuri MA, Sharma V, Santoni D, Silvestrini F, Pizzi E, Sharma A. A genomic glimpse of aminoacyl-tRNA synthetases in malaria parasite Plasmodium falciparum. BMC Genomics. 2009;10:644.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Braks JA, Mair GR, Franke-Fayard B, Janse CJ, Waters AP. A conserved U-rich RNA region implicated in regulation of translation in Plasmodium female gametocytes. Nucleic Acids Res. 2008;36(4):1176–86.PubMedCentralPubMedCrossRefGoogle Scholar
  13. Fennell C, Babbitt S, Russo I, Wilkes J, Ranford-Cartwright L, Goldberg DE, Doerig C. PfeIK1, a eukaryotic initiation factor 2alpha kinase of the human malaria parasite Plasmodium falciparum, regulates stress-response to amino-acid starvation. Malar J. 2009;8:99.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Foth BJ, Zhang N, Mok S, Preiser PR, Bozdech Z. Quantitative protein expression profiling reveals extensive post-transcriptional regulation and post-translational modifications in schizont-stage malaria parasites. Genome Biol. 2008;9(12):R177.PubMedCentralPubMedCrossRefGoogle Scholar
  15. Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 2002;419(6906):498–511.PubMedCrossRefGoogle Scholar
  16. Gomes-Santos CS, Braks J, Prudencio M, Carret C, Gomes AR, Pain A, Feltwell T, Khan S, Waters A, Janse C, et al. Transition of Plasmodium sporozoites into liver stage-like forms is regulated by the RNA binding protein Pumilio. PLoS Pathog. 2011;7(5):e1002046.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Gunderson JH, Sogin ML, Wollett G, Hollingdale M, de la Cruz VF, Waters AP, McCutchan TF. Structurally distinct, stage-specific ribosomes occur in Plasmodium. Science. 1987;238(4829):933–7.PubMedCrossRefGoogle Scholar
  18. Hall N, Karras M, Raine JD, Carlton JM, Kooij TW, Berriman M, Florens L, Janssen CS, Pain A, Christophides GK, et al. A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, and proteomic analyses. Science. 2005;307(5706):82–6.PubMedCrossRefGoogle Scholar
  19. Khan SM, Franke-Fayard B, Mair GR, Lasonder E, Janse CJ, Mann M, Waters AP. Proteome analysis of separated male and female gametocytes reveals novel sex-specific Plasmodium biology. Cell. 2005;121(5):675–87.PubMedCrossRefGoogle Scholar
  20. Lasonder E, Janse CJ, van Gemert GJ, Mair GR, Vermunt AM, Douradinha BG, van Noort V, Huynen MA, Luty AJ, Kroeze H, et al. Proteomic profiling of Plasmodium sporozoite maturation identifies new proteins essential for parasite development and infectivity. PLoS Pathog. 2008;4(10):e1000195.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Lavstsen T, Magistrado P, Hermsen CC, Salanti A, Jensen AT, Sauerwein R, Hviid L, Theander TG, Staalsoe T. Expression of Plasmodium falciparum erythrocyte membrane protein 1 in experimentally infected humans. Malar J. 2005;4(1):21.PubMedCentralPubMedCrossRefGoogle Scholar
  22. Le Roch KG, Johnson JR, Florens L, Zhou Y, Santrosyan A, Grainger M, Yan SF, Williamson KC, Holder AA, Carucci DJ, et al. Global analysis of transcript and protein levels across the Plasmodium falciparum life cycle. Genome Res. 2004;14(11):2308–18.PubMedCentralPubMedCrossRefGoogle Scholar
  23. Lindner SE, Mikolajczak SA, Vaughan AM, Moon W, Joyce BR, Sullivan Jr WJ, Kappe SH. Perturbations of Plasmodium Puf2 expression and RNA-seq of Puf2-deficient sporozoites reveal a critical role in maintaining RNA homeostasis and parasite transmissibility. Cell Microbiol. 2013;15(7):1266–83.PubMedCrossRefGoogle Scholar
  24. Mair GR, Braks JA, Garver LS, Wiegant JC, Hall N, Dirks RW, Khan SM, Dimopoulos G, Janse CJ, Waters AP. Regulation of sexual development of Plasmodium by translational repression. Science. 2006;313(5787):667–9.PubMedCentralPubMedCrossRefGoogle Scholar
  25. Mair G, Lasonder E, Garver L, Franke-Fayard B, Carret C, Wiegant J, Dirks R, Dimopoulos G, Janse C, Waters A. Universal features of post-transcriptional gene regulation are critical for Plasmodium zygote development. PLoS Pathog. 2009;6(2):e1000767.CrossRefGoogle Scholar
  26. Mair GR, Lasonder E, Garver LS, Franke-Fayard BM, Carret CK, Wiegant JC, Dirks RW, Dimopoulos G, Janse CJ, Waters AP. Universal features of post-transcriptional gene regulation are critical for Plasmodium zygote development. PLoS Pathog. 2010;6(2):e1000767.PubMedCentralPubMedCrossRefGoogle Scholar
  27. McCutchan TF, Li J, McConkey GA, Rogers MJ, Waters AP. The cytoplasmic ribosomal RNAs of Plasmodium spp. Parasitol Today. 1995;11(4):134–8.PubMedCrossRefGoogle Scholar
  28. Miao J, Fan Q, Parker D, Li X, Li J, Cui L. Puf mediates translation repression of transmission-blocking vaccine candidates in malaria parasites. PLoS Pathog. 2013;9(4):e1003268.PubMedCentralPubMedCrossRefGoogle Scholar
  29. Mourier T, Carret C, Kyes S, Christodoulou Z, Gardner PP, Jeffares DC, Pinches R, Barrell B, Berriman M, Griffiths-Jones S, et al. Genome-wide discovery and verification of novel structured RNAs in Plasmodium falciparum. Genome Res. 2008;18(2):281–92.PubMedCentralPubMedCrossRefGoogle Scholar
  30. Muller K, Matuschewski K, Silvie O. The Puf-family RNA-binding protein Puf2 controls sporozoite conversion to liver stages in the malaria parasite. PLoS One. 2011;6(5):e19860.PubMedCentralPubMedCrossRefGoogle Scholar
  31. Oakley MS, Gerald N, Anantharaman V, Gao Y, Majam V, Mahajan B, Pham PT, Lotspeich-Cole L, Myers TG, McCutchan TF, et al. Radiation-induced cellular and molecular alterations in asexual intraerythrocytic Plasmodium falciparum. J Infect Dis. 2013;207(1):164–74.PubMedCentralPubMedCrossRefGoogle Scholar
  32. Paton MG, Barker GC, Matsuoka H, Ramesar J, Janse CJ, Waters AP, Sinden RE. Structure and expression of a post-transcriptionally regulated malaria gene encoding a surface protein from the sexual stages of Plasmodium berghei. Mol Biochem Parasitol. 1993;59(2):263–75.PubMedCrossRefGoogle Scholar
  33. Sebastian S, Brochet M, Collins MO, Schwach F, Jones ML, Goulding D, Rayner JC, Choudhary JS, Billker O. A Plasmodium calcium-dependent protein kinase controls zygote development and transmission by translationally activating repressed mRNAs. Cell Host Microbe. 2012;12(1):9–19.PubMedCentralPubMedCrossRefGoogle Scholar
  34. Silvie O, Goetz K, Matuschewski K. A sporozoite asparagine-rich protein controls initiation of Plasmodium liver stage development. PLoS Pathog. 2008;4(6):e1000086.PubMedCentralPubMedCrossRefGoogle Scholar
  35. Sudhakar A, Ramachandran A, Ghosh S, Hasnain SE, Kaufman RJ, Ramaiah KV. Phosphorylation of serine 51 in initiation factor 2 alpha (eIF2 alpha) promotes complex formation between eIF2 alpha(P) and eIF2B and causes inhibition in the guanine nucleotide exchange activity of eIF2B. Biochemistry. 2000;39(42):12929–38.PubMedCrossRefGoogle Scholar
  36. Tarique M, Ahmad M, Ansari A, Tuteja R. Plasmodium falciparum DOZI, an RNA helicase interacts with eIF4E. Gene. 2013;522(1):46–59.PubMedCrossRefGoogle Scholar
  37. Tewari R, Straschil U, Bateman A, Bohme U, Cherevach I, Gong P, Pain A, Billker O. The systematic functional analysis of Plasmodium protein kinases identifies essential regulators of mosquito transmission. Cell Host Microbe. 2010;8(4):377–87.PubMedCentralPubMedCrossRefGoogle Scholar
  38. Tuteja R. Unraveling the components of protein translocation pathway in human malaria parasite Plasmodium falciparum. Arch Biochem Biophys. 2007;467(2):249–60.PubMedCrossRefGoogle Scholar
  39. Westenberger SJ, McClean CM, Chattopadhyay R, Dharia NV, Carlton JM, Barnwell JW, Collins WE, Hoffman SL, Zhou Y, Vinetz JM, et al. A systems-based analysis of Plasmodium vivax lifecycle transcription from human to mosquito. PLoS Negl Trop Dis. 2010;4(4):e653.PubMedCentralPubMedCrossRefGoogle Scholar
  40. Yuda M, Iwanaga S, Shigenobu S, Mair GR, Janse CJ, Waters AP, Kato T, Kaneko I. Identification of a transcription factor in the mosquito-invasive stage of malaria parasites. Mol Microbiol. 2009;71(6):1402–14.PubMedCrossRefGoogle Scholar
  41. Zhang M, Fennell C, Ranford-Cartwright L, Sakthivel R, Gueirard P, Meister S, Caspi A, Doerig C, Nussenzweig RS, Tuteja R, et al. The Plasmodium eukaryotic initiation factor-2alpha kinase IK2 controls the latency of sporozoites in the mosquito salivary glands. J Exp Med. 2010;207(7):1465–74.PubMedCentralPubMedCrossRefGoogle Scholar
  42. Zhang M, Mishra S, Sakthivel R, Rojas M, Ranjan R, Sullivan Jr WJ, Fontoura BM, Menard R, Dever TE, Nussenzweig V. PK4, a eukaryotic initiation factor 2alpha(eIF2alpha) kinase, is essential for the development of the erythrocytic cycle of Plasmodium. Proc Natl Acad Sci U S A. 2012;109(10):3956–61.PubMedCentralPubMedCrossRefGoogle Scholar
  43. Zwieb C, van Nues RW, Rosenblad MA, Brown JD, Samuelsson T. A nomenclature for all signal recognition particle RNAs. RNA. 2005;11(1):7–13.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Infectious DiseasesUniversity of Heidelberg Medical SchoolHeidelbergGermany
  2. 2.Instituto de Medicina MolecularFaculdade de Medicina da Universidade de LisboaLisbonPortugal