Encyclopedia of Malaria

Living Edition
| Editors: Peter G. Kremsner, Sanjeev Krishna

Coenzyme A Biosynthesis

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8757-9_42-1



A biosynthetic process for the generation of coenzyme A. The pathway generally involves five enzyme-mediated steps and pantothenate (vitamin B5), cysteine, and ATP (and sometimes CTP) as substrates.


During its intraerythrocytic cycle, the malaria parasite requires an extracellular supply of various nutrients (Kirk and Saliba 2007; Saliba and Kirk 2001b), including the water-soluble vitamin pantothenate (also known as vitamin B5). Pantothenate is a precursor to coenzyme A (CoA), an important coenzyme for many biochemical reactions that has been estimated to be used by as many as 9 % of all known enzymes (Strauss 2010). Early in vivo studies with...


Tuberculosis Folate Malaria Cytosol Butyl 
This is a preview of subscription content, log in to check access


  1. Augagneur Y, Jaubert L, Schiavoni M, Pachikara N, Garg A, Usmani-Brown S, et al. Identification and functional analysis of the primary pantothenate transporter, PfPAT, of the human malaria parasite Plasmodium falciparum. J Biol Chem. 2013;288(28):20558–67.PubMedCentralCrossRefPubMedGoogle Scholar
  2. Bennett TP, Trager W. Pantothenic acid metabolism during avian malaria infection: pantothenate kinase activity in duck erythrocytes and in Plasmodium lophurae. J Protozool. 1967;14(2):214–6.CrossRefPubMedGoogle Scholar
  3. Brackett S, Waletzky E, Baker M. The relation between pantothenic acid and Plasmodium gallinaceum infections in the chicken and the antimalarial activity of analogues of pantothenic acid. J Parasitol. 1946;32:453–462.CrossRefPubMedGoogle Scholar
  4. Brohn FH, Trager W. Coenzyme A requirement of malaria parasites: enzymes of coenzyme A biosynthesis in normal duck erythrocytes and erythrocytes infected with Plasmodium lophurae. Proc Natl Acad Sci U S A. 1975;72(6):2456–8.PubMedCentralCrossRefPubMedGoogle Scholar
  5. Clifton G, Bryant SR, Skinner CG. N′-(substituted) pantothenamides, antimetabolites of pantothenic acid. Arch Biochem Biophys. 1970;137(2):523–8.CrossRefPubMedGoogle Scholar
  6. de Villiers M, Macuamule C, Spry C, Hyun YM, Strauss E, Saliba KJ. Structural modification of pantothenamides counteracts degradation by pantetheinase and improves antiplasmodial activity. ACS Med Chem Lett. 2013;4(8):784–9.PubMedCentralCrossRefPubMedGoogle Scholar
  7. Desai SA, Krogstad DJ, McCleskey EW. A nutrient-permeable channel on the intraerythrocytic malaria parasite. Nature. 1993;362(6421):643–6.CrossRefPubMedGoogle Scholar
  8. Divo AA, Geary TG, Davis NL, Jensen JB. Nutritional requirements of Plasmodium falciparum in culture. I. Exogenously supplied dialyzable components necessary for continuous growth. J Protozool. 1985;32(1):59–64.CrossRefPubMedGoogle Scholar
  9. Fletcher S, Avery VM. A novel approach for the discovery of chemically diverse anti-malarial compounds targeting the Plasmodium falciparum Coenzyme A synthesis pathway. Malar J. 2014;13:343.PubMedCentralCrossRefPubMedGoogle Scholar
  10. Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 2002;419(6906):498–511.CrossRefPubMedGoogle Scholar
  11. Genschel U. Coenzyme A, biosynthesis: reconstruction of the pathway in archaea and an evolutionary scenario based on comparative genomics. Mol Biol Evol. 2004;21(7):1242–51.CrossRefPubMedGoogle Scholar
  12. Ginsburg H, Kutner S, Krugliak M, Cabantchik ZI. Characterization of permeation pathways appearing in the host membrane of Plasmodium falciparum infected red blood cells. Mol Biochem Parasitol. 1985;14(3):313–22.CrossRefPubMedGoogle Scholar
  13. Hart RJ, Lawres L, Fritzen E, Ben Mamoun C, Aly AS. Plasmodium yoelii vitamin B5 pantothenate transporter candidate is essential for parasite transmission to the mosquito. Sci Rep. 2014;4:5665.PubMedCentralCrossRefPubMedGoogle Scholar
  14. Hoegl A, Darabi H, Tran E, Awuah E, Kerdo ESC, Habib E, et al. Stereochemical modification of geminal dialkyl substituents on pantothenamides alters antimicrobial activity. Bioorg Med Chem Lett. 2014;24(15):3274–7.CrossRefPubMedGoogle Scholar
  15. Kirk K, Saliba KJ. Targeting nutrient uptake mechanisms in Plasmodium. Curr Drug Targets. 2007;8(1):75–88.CrossRefPubMedGoogle Scholar
  16. Kumar P, Chhibber M, Surolia A. How pantothenol intervenes in Coenzyme-A biosynthesis of Mycobacterium tuberculosis. Biochem Biophys Res Commun. 2007;361(4):903–9.CrossRefPubMedGoogle Scholar
  17. Kutner S, Baruch D, Ginsburg H, Cabantchik ZI. Alterations in membrane permeability of malaria-infected human erythrocytes are related to the growth stage of the parasite. Biochim Biophys Acta. 1982;687(1):113–7.CrossRefPubMedGoogle Scholar
  18. Lehane AM, Marchetti RV, Spry C, van Schalkwyk DA, Teng R, Kirk K, et al. Feedback inhibition of pantothenate kinase regulates pantothenol uptake by the malaria parasite. J Biol Chem. 2007;282(35):25395–405.CrossRefPubMedGoogle Scholar
  19. Leonardi R, Chohnan S, Zhang YM, Virga KG, Lee RE, Rock CO, et al. A pantothenate kinase from Staphylococcus aureus refractory to feedback regulation by coenzyme A. J Biol Chem. 2005;280(5):3314–22.CrossRefPubMedGoogle Scholar
  20. Martin RE, Henry RI, Abbey JL, Clements JD, Kirk K. The ‘permeome’ of the malaria parasite: an overview of the membrane transport proteins of Plasmodium falciparum. Genome Biol. 2005;6(3):R26.PubMedCentralCrossRefPubMedGoogle Scholar
  21. Mead JF, Koepfli JB. The synthesis of potential antimalarials; the preparation of methylated amides of taurine and their pantoyl derivatives. J Org Chem. 1947;12(2):295–7.CrossRefPubMedGoogle Scholar
  22. Mead JF, Rapport MM, Senear AE, Maynard JT, Koepfli JB. The synthesis of potential antimalarials; derivatives of pantoyltaurine. J Biol Chem. 1946;163:465–73.PubMedGoogle Scholar
  23. Muller S, Kappes B. Vitamin and cofactor biosynthesis pathways in Plasmodium and other apicomplexan parasites. Trends Parasitol. 2007;23(3):112–21.PubMedCentralCrossRefPubMedGoogle Scholar
  24. Nguitragool W, Bokhari AA, Pillai AD, Rayavara K, Sharma P, Turpin B, et al. Malaria parasite clag3 genes determine channel-mediated nutrient uptake by infected red blood cells. Cell. 2011;145(5):665–77.PubMedCentralCrossRefPubMedGoogle Scholar
  25. Pinney JW, Shirley MW, McConkey GA, Westhead DR. metaSHARK: software for automated metabolic network prediction from DNA sequence and its application to the genomes of Plasmodium falciparum and Eimeria tenella. Nucleic Acids Res. 2005;33(4):1399–409.PubMedCentralCrossRefPubMedGoogle Scholar
  26. Pitari G, Malergue F, Martin F, Philippe JM, Massucci MT, Chabret C, et al. Pantetheinase activity of membrane-bound Vanin-1: lack of free cysteamine in tissues of Vanin-1 deficient mice. FEBS Lett. 2000;483(2–3):149–54.CrossRefPubMedGoogle Scholar
  27. Prasad PD, Wang H, Huang W, Fei YJ, Leibach FH, Devoe LD, et al. Molecular and functional characterization of the intestinal Na+−dependent multivitamin transporter. Arch Biochem Biophys. 1999;366(1):95–106.CrossRefPubMedGoogle Scholar
  28. Prasad PD, Wang H, Kekuda R, Fujita T, Fei YJ, Devoe LD, et al. Cloning and functional expression of a cDNA encoding a mammalian sodium-dependent vitamin transporter mediating the uptake of pantothenate, biotin, and lipoate. J Biol Chem. 1998;273(13):7501–6.CrossRefPubMedGoogle Scholar
  29. Ralph SA, van Dooren GG, Waller RF, Crawford MJ, Fraunholz MJ, Foth BJ, et al. Tropical infectious diseases: metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat Rev Microbiol. 2004;2(3):203–16.CrossRefPubMedGoogle Scholar
  30. Rock CO, Calder RB, Karim MA, Jackowski S. Pantothenate kinase regulation of the intracellular concentration of coenzyme A. J Biol Chem. 2000;275(2):1377–83.CrossRefPubMedGoogle Scholar
  31. Saliba KJ, Ferru I, Kirk K. Provitamin B5 (pantothenol) inhibits growth of the intraerythrocytic malaria parasite. Antimicrob Agents Chemother. 2005;49(2):632–7.PubMedCentralCrossRefPubMedGoogle Scholar
  32. Saliba KJ, Horner HA, Kirk K. Transport and metabolism of the essential vitamin pantothenic acid in human erythrocytes infected with the malaria parasite Plasmodium falciparum. J Biol Chem. 1998;273(17):10190–5.CrossRefPubMedGoogle Scholar
  33. Saliba KJ, Kirk K. H+−coupled pantothenate transport in the intracellular malaria parasite. J Biol Chem. 2001a;276(21):18115–21.CrossRefPubMedGoogle Scholar
  34. Saliba KJ, Kirk K. Nutrient acquisition by intracellular apicomplexan parasites: staying in for dinner. Int J Parasitol. 2001b;31(12):1321–30.CrossRefPubMedGoogle Scholar
  35. Saliba KJ, Kirk K. CJ-15,801, a fungal natural product, inhibits the intraerythrocytic stage of Plasmodium falciparum in vitro via an effect on pantothenic acid utilisation. Mol Biochem Parasitol. 2005;141(1):129–31.CrossRefPubMedGoogle Scholar
  36. Spry C, Chai CL, Kirk K, Saliba KJ. A class of pantothenic acid analogs inhibits Plasmodium falciparum pantothenate kinase and represses the proliferation of malaria parasites. Antimicrob Agents Chemother. 2005;49(11):4649–57.PubMedCentralCrossRefPubMedGoogle Scholar
  37. Spry C, Kirk K, Saliba KJ. Coenzyme A biosynthesis: an antimicrobial drug target. FEMS Microbiol Rev. 2008;32(1):56–106.CrossRefPubMedGoogle Scholar
  38. Spry C, Macuamule C, Lin Z, Virga KG, Lee RE, Strauss E, et al. Pantothenamides are potent, on-target inhibitors of Plasmodium falciparum growth when serum pantetheinase is inactivated. PLoS One. 2013;8(2):e54974.PubMedCentralCrossRefPubMedGoogle Scholar
  39. Spry C, Saliba KJ. The human malaria parasite Plasmodium falciparum is not dependent on host coenzyme A biosynthesis. J Biol Chem. 2009;284(37):24904–13.PubMedCentralCrossRefPubMedGoogle Scholar
  40. Spry C, Saliba KJ, Strauss E. A miniaturized assay for measuring small molecule phosphorylation in the presence of complex matrices. Anal Biochem. 2014;451:76–8.CrossRefPubMedGoogle Scholar
  41. Spry C, van Schalkwyk DA, Strauss E, Saliba KJ. Pantothenate utilization by Plasmodium as a target for antimalarial chemotherapy. Infect Disord Drug Targets. 2010;10(3):200–16.CrossRefPubMedGoogle Scholar
  42. Stolz J, Sauer N. The fenpropimorph resistance gene FEN2 from Saccharomyces cerevisiae encodes a plasma membrane H+−pantothenate symporter. J Biol Chem. 1999;274(26):18747–52.CrossRefPubMedGoogle Scholar
  43. Strauss E. Coenzyme A biosynthesis and enzymology. In: Mander L, Liu H-W, editors. Comprehensive natural products II - Chemistry and biology, vol. 7. Oxford: Elsevier; 2010. pp. 351–410.Google Scholar
  44. Strauss E, Begley TP. The antibiotic activity of N-pentylpantothenamide results from its conversion to ethyldethia-coenzyme A, a coenzyme A antimetabolite. J Biol Chem. 2002;277(50):48205–9.CrossRefPubMedGoogle Scholar
  45. Thomas J, Cronan JE. Antibacterial activity of N-pentylpantothenamide is due to inhibition of coenzyme A synthesis. Antimicrob Agents Chemother. 2010;54(3):1374–7.PubMedCentralCrossRefPubMedGoogle Scholar
  46. Trager W. Studies on the extracellular cultivation of an intracellular parasite (avian malaria). The effects of malate and of coenzyme A concentrates. J Exp Med. 1952;96(5):465–76.PubMedCentralCrossRefPubMedGoogle Scholar
  47. Trager W. Coenzyme-A and the malaria parasite Plasmodium lophurae. J Protozool. 1954;1(4):231–7.CrossRefGoogle Scholar
  48. Trager W, Jensen JB. Human malaria parasites in continuous culture. Science. 1976;193(4254):673–5.CrossRefPubMedGoogle Scholar
  49. van der Westhuyzen R, Hammons JC, Meier JL, Dahesh S, Moolman WJ, Pelly SC, et al. The antibiotic CJ-15,801 is an antimetabolite that hijacks and then inhibits CoA biosynthesis. Chem Biol. 2012;19(5):559–71.PubMedCentralCrossRefPubMedGoogle Scholar
  50. Wellems TE, Plowe CV. Chloroquine-resistant malaria. J Infect Dis. 2001;184(6):770–6.CrossRefPubMedGoogle Scholar
  51. Wittwer CT, Schweitzer C, Pearson J, Song WO, Windham CT, Wyse BW, et al. Enzymes for liberation of pantothenic acid in blood: use of plasma pantetheinase. Am J Clin Nutr. 1989;50(5):1072–8.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Medical SchoolThe Australian National UniversityCanberraAustralia
  2. 2.Research School of BiologyThe Australian National UniversityCanberraAustralia
  3. 3.Department of ChemistryUniversity of CambridgeCambridgeUK