Encyclopedia of Malaria

Living Edition
| Editors: Peter G. Kremsner, Sanjeev Krishna

Porphyrin Metabolism

  • Viswanathan Arun Nagaraj
  • Pundi Narasimhan Rangarajan
  • Govindarajan Padmanaban
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8757-9_4-1



The porphyrin biosynthetic pathway in the malaria parasite has several unique features when compared to that of the human host. Heme, the end product of porphyrin metabolism in the malaria parasite, serves as an essential prosthetic group for the mitochondrial cytochromes that are involved in the electron transport chain. The enzymes of this pathway are localized in three different compartments, namely, mitochondrion, apicoplast, and cytosol. δ-Aminolevulinic acid (ALA), the committed precursor for heme, is synthesized in the parasite mitochondrion via Shemin pathway in which glycine and succinyl-CoA serve as precursors. The subsequent steps giving rise to coproporphyrinogen III take place in the apicoplast followed by the conversion of coproporphyrinogen III into protoporphyrinogen IX in the parasite cytosol....


Malaria Parasite Electron Transport Chain Liver Stage Heme Biosynthesis Heme Biosynthetic Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Dhanasekaran S, Chandra NR, Sagar BKC, et al. δ-Aminolevulinate dehydratase from Plasmodium falciparum: indigenous vs. imported. J Biol Chem. 2004;279:6934–42.PubMedCrossRefGoogle Scholar
  2. Marks GS. Heme and chlorophyll: chemical, biochemical and medical aspects. London: D. Van Nostrand; 1969.Google Scholar
  3. Nagaraj VA, Arumugam R, Gopalakrishnan B, et al. Unique properties of parasite genome-coded porphobilinogen deaminase from Plasmodium falciparum. J Biol Chem. 2008;283:437–44.PubMedCrossRefGoogle Scholar
  4. Nagaraj VA, Arumugam R, Chandra NR, et al. Localization of Plasmodium falciparum uroporphyrinogen III decarboxylase of the heme biosynthetic pathway in the apicoplast and characterization of its catalytic properties. Int J Parasitol. 2009a;39:559–68.PubMedCrossRefGoogle Scholar
  5. Nagaraj VA, Prasad D, Rangarajan PN, et al. Mitochondrial localization of functional ferrochelatase from Plasmodium falciparum. Mol Biochem Parasitol. 2009b;168:109–12.PubMedCrossRefGoogle Scholar
  6. Nagaraj VA, Prasad D, Rangarajan PN, et al. Characterization of coproporphyrinogen III oxidase in Plasmodium falciparum cytosol. Parasitol Int. 2010a;59:121–7.PubMedCrossRefGoogle Scholar
  7. Nagaraj VA, Arumugam R, Prasad D, et al. Protoporphyrinogen IX oxidase from Plasmodium falciparum is anaerobic and is localized to the mitochondrion. Mol Biochem Parasitol. 2010b;174:44–52.PubMedCrossRefGoogle Scholar
  8. Nagaraj VA, Sundaram B, Varadharajan NM, et al. Malaria parasite-synthesized heme is essential in the mosquito and liver stages and complements host heme in the blood stages of infection. PLoS Pathog. 2013;9:e1003522.PubMedCentralPubMedCrossRefGoogle Scholar
  9. Padmanaban G, Nagaraj VA, Rangarajan PN. Unique features of heme biosynthesis in the malaria parasite. In: Kadish KM, Smith KM, Guilard R, Ferreira GC, editors. Handbook of porphyrin science: with applications to chemistry, physics, materials science, engineering, biology and medicine. Hackensack: World Scientific; 2013;27:167–210.Google Scholar
  10. Ralph SA, van Dooren GG, Waller RF, et al. Tropical infectious diseases: metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat Rev Microbiol. 2004;2:203–16.PubMedCrossRefGoogle Scholar
  11. Sato S, Wilson RJ. The genome of Plasmodium falciparum encodes an active delta-aminolevulinic acid dehydratase. Curr Genet. 2002;40:391–8.PubMedCrossRefGoogle Scholar
  12. Sato S, Wilson RJ. Proteobacteria-like ferrochelatase in the malaria parasite. Curr Genet. 2003;42:292–300.PubMedGoogle Scholar
  13. Sato S, Clough B, Coates L, et al. Enzymes for heme biosynthesis are found in both the mitochondrion and plastid of the malaria parasite Plasmodium falciparum. Protist. 2004;155:117–25.PubMedCrossRefGoogle Scholar
  14. Surolia N, Padmanaban G. De novo biosynthesis of heme offers a new chemotherapeutic target in the human malarial parasite. Biochem Biophys Res Commun. 1992;187:744–50.PubMedCrossRefGoogle Scholar
  15. Vaidya AB. Atovaquone-proguanil combination. In: Rosenthal PJ, editor. Antimalarial chemotherapy: mechanisms of action, resistance, and new directions in drug discovery. Totowa: Humana Press; 2001. p. 203–18.CrossRefGoogle Scholar
  16. van Dooren GG, Kennedy AT, Mcfadden GI. The use and abuse of heme in apicomplexan parasites. Antioxid Redox Signal. 2012;17:634–56.PubMedCrossRefGoogle Scholar
  17. Varadharajan S, Dhanasekaran S, Rangarajan PN, et al. Involvement of δ-Aminolevulinate synthase in de novo haem synthesis by Plasmodium falciparum. Biochem J. 2002;367:321–7.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Viswanathan Arun Nagaraj
    • 1
    • 2
  • Pundi Narasimhan Rangarajan
    • 2
  • Govindarajan Padmanaban
    • 2
  1. 1.Centre for Infectious Disease ResearchIndian Institute of ScienceBangaloreIndia
  2. 2.Department of BiochemistryIndian Institute of ScienceBangaloreIndia