Skip to main content

Glycolysis

  • Living reference work entry
  • First Online:
Encyclopedia of Malaria

Synonyms

Embden-Meyerhof-Parnas pathway

Definition

Glycolysis, occurring in cytoplasm of almost all organisms, can be defined as a metabolic pathway consisting of ten enzyme-catalyzed reactions that degrade glucose to pyruvate with the formation of high-energy ATP and NADH. Although oxygen is not required, the terms – aerobic and anaerobic glycolysis – are frequently used. The latter pathway, of relevance here, involves regeneration of NAD+ with lactate formation.

Introduction

Malaria in humans is caused by six known species of Plasmodium. These are P. falciparum, P. vivax, P. ovale curtisi, P. ovale wallikeri, P. malariae, and P. knowlesi. The parasite has a complex life cycle with anopheles mosquito as the definitive host and has adapted to the different environments in the insect and vertebrate hosts. In mosquitoes, the growth is largely extracellular and aerobic. In vertebrates the environments are comparatively glucose-rich; growth is largely intracellular and exhibits anaerobic...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agbenyega T, Angus BJ, Bedu-Addo G, Baffoe-Bonnie B, Guyton T, Stacpoole PW, Krishna S. Glucose and lactate kinetics in children with severe malaria. J Clin Endocrinol Metab. 2000;85:1569–76.

    CAS  PubMed  Google Scholar 

  • Brady RL, Cameron A. Structure-based approaches to the development of novel anti-malarials. Curr Drug Targets. 2004;5:137–49.

    Article  CAS  PubMed  Google Scholar 

  • Buscaglia CA, Coppens I, Hol WG, Nussenzweig V. Sites of interaction between aldolase and thrombospondin-related anonymous protein in plasmodium. Mol Biol Cell. 2003;14:4947–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bzik DJ, Fox BA, Gonyer K. Expression of Plasmodium falciparum lactate dehydrogenase in Escherichia coli. Mol Biochem Parasitol. 1993;59:155–66.

    Article  CAS  PubMed  Google Scholar 

  • Cameron A, Read J, Tranter R, Winter VJ, Sessions RB, et al. Identification and activity of a series of azole-based compounds with lactate dehydrogenase-directed anti-malarial activity. J Biol Chem. 2004;279:31429–39.

    Article  CAS  PubMed  Google Scholar 

  • Campanale N, Nickel C, Daubenberger CA, Wehlan DA, Gorman JJ, Klonis N, Becker K, Tilley L. Identification and characterization of heme-interacting proteins in the malaria parasite, Plasmodium falciparum. J Biol Chem. 2003;278:27354–61.

    Article  CAS  PubMed  Google Scholar 

  • Carter R. Enzyme variation in Plasmodium berghei. Trans R Soc Trop Med Hyg. 1970;64:401.

    Article  CAS  PubMed  Google Scholar 

  • Certa U, Ghersa P, Döbeli H, Matile H, Kocher HP, et al. Aldolase activity of a Plasmodium falciparum protein with protective properties. Science. 1988;240:1036–8.

    Article  CAS  PubMed  Google Scholar 

  • Chan M, Sim TS. Functional analysis, overexpression, and kinetic characterization of pyruvate kinase from Plasmodium falciparum. Biochem Biophys Res Comm. 2005;326:188–96.

    Article  CAS  PubMed  Google Scholar 

  • Daily JP, Scanfeld D, Pochet N, Roch KL, Plouffe D, Kamal M, et al. Distinct physiological states of Plasmodium falciparum in malaria-infected patients. Nature. 2007;450:1091–5.

    Article  CAS  PubMed  Google Scholar 

  • Daubenberger CA, Poltl-Frank F, Jiang G, Lipp J, Certa U, Pluschke G. Identification and recombinant expression of glyceraldehyde-3-phosphate dehydrogenase of Plasmodium falciparum. Gene. 2000;246:255–64.

    Article  CAS  PubMed  Google Scholar 

  • Daubenberger CA, Tisdale EJ, Curcic M, Diaz D, Silvie O, Mazier D, Eling W, Bohrmann B, Matile H, Pluschke G. The N’-terminal domain of glyceraldehyde-3-phosphate dehydrogenase of the apicomplexan Plasmodium falciparum mediates GTPase Rab2-dependent recruitment to membranes. Biol Chem. 2003;384:1227–37.

    Article  CAS  PubMed  Google Scholar 

  • Davis TM, Looareesuwan S, Pukrittayakamee S, Levy JC, Nagachinta B, White NJ. Glucose turnover in severe falciparum malaria. Metabolism. 1993;42:334–40.

    Article  CAS  PubMed  Google Scholar 

  • Davis TM, Binh TQ, le Thu TA, Long TT, Johnston W, Robertson K, Barrett PH. Glucose and lactate turnover in adults with falciparum malaria: effect of complications and antimalarial therapy. Trans R Soc Trop Med Hyg. 2002;96:411–7.

    Article  CAS  PubMed  Google Scholar 

  • Döbeli H, Itin C, Meier B, Certa U. Is Plasmodium falciparum aldolase useful for rational drug design? Acta Leiden. 1991;60:135–40.

    PubMed  Google Scholar 

  • Dunn CR, Banfield MJ, Barker JJ, Higham CW, Moreton KM, Turgut-Balik D, Brady RL, Holbrook JJ. The structure of lactate dehydrogenase from Plasmodium falciparum reveals a new target for anti-malarial design. Nat Struct Biol. 1996;3:912–5.

    Article  CAS  PubMed  Google Scholar 

  • Duszenko M, Balla H, Mecke D. Specific inactivation of glucose metabolism from eucaryotic cells by pentalenolactone. Biochim Biophys Acta. 1982;714:344–50.

    Article  CAS  PubMed  Google Scholar 

  • Elliott JL, Saliba KJ, Kirk K. Transport of lactate and pyruvate in the intraerythrocytic malaria parasite, Plasmodium falciparum. Biochem J. 2001;355:733–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ghosh AK, Coppens I, Gardsvoll H, Ploug M, Jacobs-Lorena M. Plasmodium ookinetes coopt mammalian plasminogen to invade the mosquito midgut. Proc Natl Acad Sci USA. 2011;108:17153–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ginsburg H. Malaria parasite metabolic pathways. 2000. http://priweb.cc.huji.ac.il/malaria/

  • Grall M, Srivastava IK, Schmidt M, Garcia AM, Mauël J, Perrin LH. Plasmodium falciparum: identification and purification of the phosphoglycerate kinase of the malaria parasite. Exp Parasitol. 1992;75:10–8.

    Article  CAS  PubMed  Google Scholar 

  • Harris MT, Walker DM, Drew ME, Mitchell WG, Dao K, Schroeder CE, et al. Interrogating a hexokinase-selected small-molecule library for inhibitors of Plasmodium falciparum hexokinase. Antimicrob Agents Chemother. 2013;57:3731–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hernandez-Romano J, Rodriguez MH, Pando V, Torres-Monzon JA, Alvarado-Delgado A, Lecona Valera AN, Ramos RA, Martinez-Barnetche J, Rodriguez MC. Conserved peptide sequences bind to actin and enolase on the surface of Plasmodium berghei ookinetes. Parasitology. 2011;138:1341–53.

    Article  CAS  PubMed  Google Scholar 

  • Hicks KE, Read M, Holloway SP, Sims PFG, Hyde JE. Glycolytic pathway of the human malaria parasite Plasmodium falciparum: primary sequence analysis of the gene encoding 3-phosphoglycerate kinase and chromosomal mapping studies. Gene. 1991;100:123–9.

    Article  CAS  PubMed  Google Scholar 

  • Hills T, Srivastava A, Ayi K, Wernimont AK, Kain K, Waters AP, Hui R, Pizarro JC. Characterization of a new phosphatase from Plasmodium. Mol Biochem Parasitol. 2011;179:69–79.

    Article  CAS  PubMed  Google Scholar 

  • Itin C, Burki Y, Certa U, Döbeli H. Selective inhibition of Plasmodium falciparum aldolase by a tubulin derived peptide and identification of the binding site. Mol Biochem Parasitol. 1993;58:135–43.

    Article  CAS  PubMed  Google Scholar 

  • Jacobasch G, Buckwitz D, Gerth C, Thamm R. Regulation of the energy metabolism of Plasmodium berghei. Biomed Biochim Acta. 1990;49:S289–94.

    CAS  PubMed  Google Scholar 

  • Jacobasch G, Werner A, Siems W, Gerth C. Nucleotide status in erythrocytes of rats infected with Plasmodium berghei. Adv Exp Med Biol. 1991;309A:161–4.

    Article  CAS  PubMed  Google Scholar 

  • Kahn A, Marie J. Pyruvate kinases from human erythrocytes and liver. Methods Enzymol. 1982;9:131–40.

    Article  Google Scholar 

  • Kanaani J, Ginzburg H. Metabolic interconnection between the human malarial parasite Plasmodium falciparum and its host erythrocyte. Regulation of ATP levels by means of an adenylate translocator and adenylate kinase. J Biol Chem. 1989;264:3194–9.

    CAS  PubMed  Google Scholar 

  • Kaslow DC, Hill S. Cloning metabolic pathway genes by complementation in Escherichia coli. Isolation and expression of Plasmodium falciparum glucose phosphate isomerase. J Biol Chem. 1990;265:12337–41.

    CAS  PubMed  Google Scholar 

  • Kim H, Certa U, Döbeli H, Jakob P, Hol WG. Crystal structure of fructose-1,6-bisphosphate aldolase from the human malaria parasite Plasmodium falciparum. Biochemistry. 1998;37:4388–96.

    Article  CAS  PubMed  Google Scholar 

  • Kruckeberg WC, Sander BJ, Sullivan DC. Plasmodium berghei: glycolytic enzymes of the infected mouse erythrocyte. Exp Parasitol. 1981;51:438–43.

    Article  CAS  PubMed  Google Scholar 

  • Lang-Unnasch N, Murphy AD. Metabolic changes of the malaria parasite during the transition from the human to the mosquito host. Ann Rev Microbiol. 1998;52:561–90.

    Article  CAS  Google Scholar 

  • LeRoux M, Lakshmanan V, Daily JP. Plasmodium falciparum biology: analysis of in vitro versus in vivo growth conditions. Trends Parasitol. 2009;25:474–81.

    Article  PubMed  Google Scholar 

  • MacRae JI, Dixon MWA, Megan K, Dearnley MK, Chua HH, Chambers JM, et al. Mitochondrial metabolism of sexual and asexual blood stages of the malaria parasite Plasmodium falciparum. BMC Biol. 2013;11:67.

    Article  PubMed Central  PubMed  Google Scholar 

  • Maeda T, Saito T, Harb OS, Roos DS, Takeo S, Suzuki H, Tsuboi T, Takeuchi T, Asai T. Pyruvate type-II isozyme in Plasmodium falciparum localizes to the apicoplast. Parsitol Int. 2009;58:101–5.

    Article  CAS  Google Scholar 

  • Manolescu AR, Witkowska K, Kinnaird A, Cessford T, Cheeseman C. Facilitated hexose transporters: new perspectives on form and function. Physiology (Bethesda). 2007;22:234–40.

    Article  CAS  Google Scholar 

  • Manwell RD, Feigelson P. Glycolysis in Plasmodium gallinaceum. Proc Soc Exp Biol Med. 1949;70:578–82.

    Article  CAS  PubMed  Google Scholar 

  • Mehta M, Sharma S, Sonawat HM. Malaria parasite infected erythrocytes inhibit glucose utilization in uninfected red cells. FEBS Lett. 2005;579:6151–8.

    Article  CAS  PubMed  Google Scholar 

  • Mehta M, Sonawat HM, Sharma S. Glycolysis in Plasmodium falciparum results in modulation of host enzyme activities. J Vect Borne Dis. 2006;43:95–103.

    CAS  Google Scholar 

  • Momen H. Biochemistry of intraerythrocytic parasites. II. Comparative studies in carbohydrate metabolism. Ann Trop Med Parasitol. 1979;73:117–21.

    CAS  PubMed  Google Scholar 

  • Mony BM, Mehta M, Jarori GK, Sharma S. Plant-like phosphofructokinase from Plasmodium falciparum belongs to a novel class of ATP-dependent enzymes. Int J Parasitol. 2009;39:1441–53.

    Article  CAS  PubMed  Google Scholar 

  • Olafsson P, Certa U. Expression and cellular localisation of hexokinase during the bloodstage development of Plasmodium falciparum. Mol Biochem Parasitol. 1994;63:171–4.

    Article  CAS  PubMed  Google Scholar 

  • Olafsson P, Matile H, Certa U. Molecular analysis of Plasmodium falciparum hexokinase. Mol Biochem Parasitol. 1992;56:89–101.

    Article  CAS  PubMed  Google Scholar 

  • Pal-Bhowmick I, Sadagopan K, Vora HK, Sehgal A, Sharma S, Jarori GK. Cloning, over-expression, purification and characterization of Plasmodium falciparum enolase. Eur J Biochem. 2004;271:4845–54.

    Article  CAS  PubMed  Google Scholar 

  • Pal-Bhowmick I, Vora HK, Jarori GK. Sub-cellular localization and post-translational modifications of the Plasmodium yoelii enolase suggest moonlighting functions. Malar J. 2007a;6:45.

    Article  PubMed Central  PubMed  Google Scholar 

  • Pal-Bhowmick I, Mehta M, Coppens I, Sharma S, Jarori GK. Protective properties and surface localization of Plasmodium falciparum enolase. Infect Immun. 2007b;75:5500–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pal-Bhowmick I, Andersen J, Srinivasan P, Narum DL, Bosch J, Miller LH. Binding of aldolase and glyceraldehydes-3-phosphate dehydrogenase to the cytoplasmic tails of Plasmodium falciparum merozoite duffy binding-like and reticulocyte homology ligands. mBio. 2012;3:e00292–12. doi:10.1128/mBio.00292-12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Penna-Coutinho J, Cortopassi WA, Oliveira AA, França TC, Krettli AU. Antimalarial activity of potential inhibitors of Plasmodium falciparum lactate dehydrogenase enzyme selected by docking studies. PLoS One. 2011;6:e21237.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ranie J, Kumar VP, Balaram H. Cloning of the triosephosphate isomerase gene of Plasmodium falciparum and expression in Escherichia coli. Mol Biochem Parasitol. 1993;61:159–69.

    Article  CAS  PubMed  Google Scholar 

  • Robien MA, Bosch J, Buckner FS, Van Voorhis WCE, Worthey EA, et al. Crystal structure of glyceraldehyde-3-phosphate dehydrogenase from Plasmodium falciparum at 2.25 Ã… resolution reveals intriguing extra electron density in the active site. Proteins Struct Funct Bioinf. 2006;62:570–7.

    Article  CAS  Google Scholar 

  • Roth Jr EF. Malarial parasite hexokinase and hexokinase-dependent glutathione reduction in the Plasmodium falciparum-infected human erythrocyte. J Biol Chem. 1987;262:15678–82.

    CAS  PubMed  Google Scholar 

  • Roth Jr EF, Calvin MC, Max-Audit I, Rosa J, Rosa R. The enzymes of the glycolytic pathway in erythrocytes infected with Plasmodium falciparum malaria parasites. Blood. 1988;72:1922–5.

    CAS  PubMed  Google Scholar 

  • Roth Jr EF. Plasmodium falciparum carbohydrate metabolism: a connection between host cell and parasite. Blood Cells. 1990;16:453–60.

    CAS  PubMed  Google Scholar 

  • Saliba KJ, Krishna S, Kirk K. Inhibition of hexose transport and abrogation of pH homeostasis in the intraerythrocytic malaria parasite by an O-3-hexose derivative. FEBS Lett. 2004;570:93–6.

    Article  CAS  PubMed  Google Scholar 

  • Sander BJ, Kruckeberg WC. Plasmodium berghei: glycolytic intermediate concentrations of the infected mouse erythrocyte. Exp Parasitol. 1981;52:1–8.

    Article  CAS  PubMed  Google Scholar 

  • Sander BJ, Lowery MS, Kruckeberg WC. Glycolytic metabolism in malaria infected red cells. Prog Clin Biol Res. 1981;55:469–90.

    CAS  PubMed  Google Scholar 

  • Sander BJ, Lowery MS, Kruckeberg WC. Plasmodium berghei: Acid-insensitive phosphofructokinase in infected mouse erythrocytes. Exp Parasitol. 1982;53:11–16.

    Article  CAS  PubMed  Google Scholar 

  • Saxena N, Pandey VC, Dutta GP, Ghatak S. Characterization of lactate dehydrogenase of Plasmodium knowlesi. Mol Biochem Parasitol. 1986;21:199–202.

    Article  CAS  PubMed  Google Scholar 

  • Shakespeare PG, Trigg PI. Glucose catabolism by the simian malaria parasite Plasmodium knowlesi. Nature. 1973;241:538–40.

    Article  CAS  PubMed  Google Scholar 

  • Shakespeare PG, Trigg PI, Kyd SI, Tappenden L. Glucose metabolism in the simian malaria parasite Plasmodium knowlesi: activities of the glycolytic and pentose phosphate pathways during the intraerythrocytic cycle. Ann Trop Med Parasitol. 1979;73:407–15.

    CAS  PubMed  Google Scholar 

  • Sherman IW. Metabolism and surface transport of parasitized erythrocytes in malaria. Ciba Found Symp. 1983;94:206–21.

    CAS  PubMed  Google Scholar 

  • Sherman IW, Ruble JA, Ting IP. Plasmodium lophurae: (U-14C)-glucose catabolism by free Plasmodia and duckling host erythrocytes. Exp Parasitol. 1969;25:181–92.

    Article  CAS  PubMed  Google Scholar 

  • Shevade S, Jindal N, Dutta S, Jarori GK. Food vacuole associated enolase in Plasmodium undergoes multiple post-translational modifications: evidence for atypical ubiquitination. PLoS One. 2013;8:e72687.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singh V, Kaushal DC, Rathaur S, Kumar N, Kaushal NA. Cloning, overexpression, purification and characterization of Plasmodium knowlesi lactate dehydrogenase. Protein Expr Purif. 2012;84:195–203.

    Article  CAS  PubMed  Google Scholar 

  • Slavic K, Krishna S, Derbyshire ET, Staines HM. Plasmodial sugar transporters as anti-malarial drug targets and comparisons with other protozoa. Malar J. 2011;10:165.

    Article  PubMed Central  PubMed  Google Scholar 

  • Smith CD, Chattopadhyay D, Pal B. Crystal structure of Plasmodium falciparum phosphoglycerate kinase: evidence for anion binding in the basic patch. Biochem Biophys Res Commun. 2011;412:203–6.

    Article  CAS  PubMed  Google Scholar 

  • Srivastava IK, Schmidt M, Grall M, Certa U, Garcia AM, Perrin LH. Identification and purification of glucose phosphate isomerase of Plasmodium falciparum. Mol Biochem Parasitol. 1992;54:153–64.

    Article  CAS  PubMed  Google Scholar 

  • Tjhin ET, Staines HM, van Schalkwyk DA, Krishna S, Saliba KJ. Studies with the Plasmodium falciparum hexokinase reveal that PfHT limits the rate of glucose entry into glycolysis. FEBS Lett. 2013;587:3182–7.

    Article  CAS  PubMed  Google Scholar 

  • Turget-Balik D, Akbulut E, Shoemark DK, Celik V, Moreton KM, Sessions RB, Holbrook JJ, Brady RL. Cloning, sequence and expression of the lactate dehydrogenase gene from the human malaria parasite, Plasmodium vivax. Biotechnol Lett. 2004;26:1051–5.

    Article  Google Scholar 

  • Udeinya IJ, Van Dyke K. Plasmodium falciparum: synthesis of glycoprotein by cultured erythrocytic stages. Exp Parasitol. 1981;52:297–302.

    Article  CAS  PubMed  Google Scholar 

  • Vaidya AB, Mather MW. Mitochondrial evolution and functions in malaria parasites. Ann Rev Microbiol. 2009;63:249–67.

    Article  CAS  Google Scholar 

  • van Schalkwyk DA, Priebe W, Saliba KJ. The inhibitory effect of 2-halo derivatives of d-glucose on glycolysis and on the proliferation of the human malaria parasite Plasmodium falciparum. J Pharmacol Exp Ther. 2008;327:511–7.

    Article  PubMed  Google Scholar 

  • Velanker SS, Ray SS, Gokhale RS, Suma S, Balaram H, Balaram P, Murthy MR. Triosephosphate isomerase from Plasmodium falciparum: the crystal structure provides insights into antimalarial drug design. Structure. 1997;5:751–61.

    Article  CAS  PubMed  Google Scholar 

  • Woodrow CJ, Penny JI, Krishna S. Intraerythrocytic Plasmodium falciparum expresses a high affinity facilitative hexose transporter. J Biol Chem. 1999;274:7272–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haripalsingh M. Sonawat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Sharma, S., Jarori, G.K., Sonawat, H.M. (2013). Glycolysis. In: Hommel, M., Kremsner, P. (eds) Encyclopedia of Malaria. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8757-9_21-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8757-9_21-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-8757-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics