Skip to main content

Antifolate Drugs

  • Living reference work entry
  • First Online:

Synonyms

Antifols; Folate antagonists; Folate antimetabolites; Folate enzyme inhibitors; Proguanil; Pyrimethamine; Sulfa drugs; Sulfadoxine-pyrimethamine (SP)

Definition

Antifolate drugs are used as antimalarials through their inhibition of folate metabolism of the parasite, both in the synthesis and use of folate cofactors. Humans do not make any folate cofactors, relying only on exogenous supply, and are therefore mostly spared from the effects of antifolate drugs. The key enzyme targets are dihydropteroate synthase (DHPS), inhibited by sulfa drugs, and dihydrofolate reductase (DHFR), inhibited by pyrimethamine, cycloguanil, and other inhibitors. These drugs are mostly used as combinations of the two inhibitors acting against different targets, with synergistic effect. Combinations with other types of antimalarials are sometimes made in the attempt to prevent the emergence of drug resistance. Antifolate resistance occurs mainly from mutations at the genes encoding their target...

This is a preview of subscription content, log in via an institution.

References

  • Alonso PL, Djimde A, et al. A research agenda for malaria eradication: drugs. PLoS Med. 2011;8(1):e1000402.

    Article  Google Scholar 

  • Bacon DJ, Jambou R, et al. World Antimalarial Resistance Network (WARN) II: in vitro antimalarial drug susceptibility. Malar J. 2007;6:120.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bell A. Antimalarial drug synergism and antagonism: mechanistic and clinical significance. FEMS Microbiol Lett. 2005;253(2):171–84.

    Article  PubMed  CAS  Google Scholar 

  • Bjorkman A, Phillips-Howard PA. Adverse reactions to sulfa drugs: implications for malaria chemotherapy. Bull World Health Organ. 1991;69(3):297–304.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Burrows JN, Burlot E et al. Antimalarial drug discovery: the path towards eradication. Parasitology. 2014;141:128–139.

    Google Scholar 

  • Canfield CJ, Milhous WK, et al. PS-15: a potent, orally active antimalarial from a new class of folic acid antagonists. Am J Trop Med Hyg. 1993;49(1):121–6.

    PubMed  CAS  Google Scholar 

  • Crowther AF, Levi AA. Proguanil – the isolation of a metabolite with high antimalarial activity. Br J Pharmacol. 1953;8(1):93–7.

    CAS  Google Scholar 

  • Delves M, Plouffe D, et al. The activities of current antimalarial drugs on the life cycle stages of Plasmodium: a comparative study with human and rodent parasites. PLoS Med. 2012;9(2):e1001169.

    Article  PubMed  PubMed Central  Google Scholar 

  • Derbyshire ER, Prudencio M, et al. Liver-stage malaria parasites vulnerable to diverse chemical scaffolds. Proc Natl Acad Sci U S A. 2012;109(22):8511–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ferone R. Folate metabolism in malaria. Bull World Health Organ. 1977;55(2–3):291–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gahtori P, Ghosh SK, et al. Antimalarial evaluation and docking studies of hybrid phenylthiazolyl-1,3,5-triazine derivatives: a novel and potential antifolate lead for Pf-DHFR-TS inhibition. Exp Parasitol. 2012;130(3):292–9.

    Article  PubMed  CAS  Google Scholar 

  • Gasasira AF, Kamya MR, et al. Effect of trimethoprim-sulphamethoxazole on the risk of malaria in HIV-infected Ugandan children living in an area of widespread antifolate resistance. Malar J. 2010;9:177.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gosling RD, Cairns ME, et al. Intermittent preventive treatment against malaria: an update. Expert Rev Anti Infect Ther. 2010;8(5):589–606.

    Article  PubMed  CAS  Google Scholar 

  • Greenwood B. Review: intermittent preventive treatment–a new approach to the prevention of malaria in children in areas with seasonal malaria transmission. Trop Med Int Health. 2006;11(7):983–91.

    Article  PubMed  Google Scholar 

  • Gregson A, Plowe CV. Mechanisms of resistance of malaria parasites to antifolates. Pharmacol Rev. 2005;57(1):117–45.

    Article  PubMed  CAS  Google Scholar 

  • Gutman J, Kachur SP, et al. Combination of probenecid-sulphadoxine-pyrimethamine for intermittent preventive treatment in pregnancy. Malar J. 2012;11:39.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hawkins VN, Joshi H, et al. Antifolates can have a role in the treatment of Plasmodium vivax. Trends Parasitol. 2007;23(5):213–22.

    Article  PubMed  CAS  Google Scholar 

  • Hitchings Jr GH. Nobel lecture in physiology or medicine – 1988. Selective inhibitors of dihydrofolate reductase. In Vitro Cell Dev Biol. 1989;25(4):303–10.

    Article  PubMed  CAS  Google Scholar 

  • Imwong M, Russell B, et al. Methotrexate is highly potent against pyrimethamine-resistant Plasmodium vivax. J Infect Dis. 2011;203(2):207–10.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kappe SH, Vaughan AM, et al. That was then but this is now: malaria research in the time of an eradication agenda. Science. 2010;328(5980):862–6.

    Article  PubMed  CAS  Google Scholar 

  • Kayentao K, Garner P, et al. Intermittent preventive therapy for malaria during pregnancy using 2 vs 3 or more doses of sulfadoxine-pyrimethamine and risk of low birth weight in Africa: systematic review and meta-analysis. JAMA. 2013;309(6):594–604.

    Article  PubMed  CAS  Google Scholar 

  • Kremsner PG, Krishna S. Antimalarial combinations. Lancet. 2004;364(9430):285–94.

    Article  PubMed  CAS  Google Scholar 

  • Lang T, Greenwood B. The development of Lapdap, an affordable new treatment for malaria. Lancet Infect Dis. 2003;3(3):162–8.

    Article  PubMed  Google Scholar 

  • Lozovsky ER, Chookajorn T, et al. Stepwise acquisition of pyrimethamine resistance in the malaria parasite. Proc Natl Acad Sci U S A. 2009;106(29):12025–30.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Luzzatto L. The rise and fall of the antimalarial Lapdap: a lesson in pharmacogenetics. Lancet. 2010;376(9742):739–41.

    Article  PubMed  Google Scholar 

  • Mookherjee S, Shoen C, et al. In vitro activity of JPC 2067 alone and in combination with sulfamethoxazole against nocardia species. Antimicrob Agents Chemother. 2012;56(2):1133–4.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Muller IB, Hyde JE. Folate metabolism in human malaria parasites – 75 years on. Mol Biochem Parasitol. 2013;188(1):63–77.

    Article  PubMed  CAS  Google Scholar 

  • Naidoo I, Roper C. Drug resistance maps to guide intermittent preventive treatment of malaria in African infants. Parasitology. 2011;138(12):1469–79.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nair S, Miller B, et al. Adaptive copy number evolution in malaria parasites. PLoS Genet. 2008;4(10):e1000243.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nzila A. The past, present and future of antifolates in the treatment of Plasmodium falciparum infection. J Antimicrob Chemother. 2006;57(6):1043–54.

    Article  PubMed  CAS  Google Scholar 

  • Nzila A, Okombo J, et al. Anticancer agents against malaria: time to revisit? Trends Parasitol. 2010a;26(3):125–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nzila A, Rottmann M, et al. Preclinical evaluation of the antifolate QN254, 5-chloro-N′6′-(2,5-dimethoxy-benzyl)-quinazoline-2,4,6-triamine, as an antimalarial drug candidate. Antimicrob Agents Chemother. 2010b;54(6):2603–10.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ojha H, Gahlot P, et al. Quantitative structure activity relationship study of 2,4,6-trisubstituted-s-triazine derivatives as antimalarial inhibitors of Plasmodium falciparum dihydrofolate reductase. Chem Biol Drug Des. 2011;77(1):57–62.

    Article  PubMed  CAS  Google Scholar 

  • Patel OG, Mberu EK, et al. Sulfa drugs strike more than once. Trends Parasitol. 2004;20(1):1–3.

    Article  PubMed  CAS  Google Scholar 

  • Plouffe D, Brinker A, et al. In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen. Proc Natl Acad Sci U S A. 2008;105(26):9059–64.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pretorius SI, Breytenbach WJ, et al. Synthesis, characterization and antimalarial activity of quinoline-pyrimidine hybrids. Bioorg Med Chem. 2013;21(1):269–77.

    Article  PubMed  CAS  Google Scholar 

  • Salahuddin A, Inam A, et al. Synthesis and evaluation of 7-chloro-4-(piperazin-1-yl)quinoline-sulfonamide as hybrid antiprotozoal agents. Bioorg Med Chem. 2013;21(11):3080–9.

    Article  PubMed  CAS  Google Scholar 

  • Shearer TW, Kozar MP, et al. In vitro metabolism of phenoxypropoxybiguanide analogues in human liver microsomes to potent antimalarial dihydrotriazines. J Med Chem. 2005;48(8):2805–13.

    Article  PubMed  CAS  Google Scholar 

  • Sherman IW. Reflections on century of malaria biochemistry. Adv Parasitol Elsevier. 2008;67:117–38.

    Article  Google Scholar 

  • Sibley CH, Price RN. Monitoring antimalarial drug resistance: applying lessons learned from the past in a fast-moving present. Int J Parasitol Drugs Drug Resist. 2012;2:126–33.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sibley CH, Guerin PJ, et al. Monitoring antimalarial resistance: launching a cooperative effort. Trends Parasitol. 2010;26(5):221–4.

    Article  PubMed  Google Scholar 

  • Sims P, Wang P, et al. Selection and synergy in Plasmodium falciparum. Parasitol Today. 1999;15(4):132–4.

    Article  PubMed  CAS  Google Scholar 

  • Sirichaiwat C, Intaraudom C, et al. Target guided synthesis of 5-benzyl-2,4-diamonopyrimidines: their antimalarial activities and binding affinities to wild type and mutant dihydrofolate reductases from Plasmodium falciparum. J Med Chem. 2004;47(2):345–54.

    Article  PubMed  CAS  Google Scholar 

  • Sweeney AW. Wartime research on malaria chemotherapy. Parassitologia. 2000;42(1–2):33–45.

    PubMed  CAS  Google Scholar 

  • Taylor WR, White NJ. Antimalarial drug toxicity: a review. Drug Saf. 2004;27(1):25–61.

    Article  PubMed  CAS  Google Scholar 

  • ter Kuile FO, van Eijk AM, et al. Effect of sulfadoxine-pyrimethamine resistance on the efficacy of intermittent preventive therapy for malaria control during pregnancy: a systematic review. JAMA. 2007;297(23):2603–16.

    Article  PubMed  Google Scholar 

  • Wang P, Brobey RK, et al. Utilization of exogenous folate in the human malaria parasite Plasmodium falciparum and its critical role in antifolate drug synergy. Mol Microbiol. 1999;32(6):1254–62.

    Article  PubMed  CAS  Google Scholar 

  • Ward SA, Helsby NA, et al. The activation of the biguanide antimalarial proguanil co-segregates with the mephenytoin oxidation polymorphism – a panel study. Br J Clin Pharmacol. 1991;31(6):689–92.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • White N. Antimalarial drug resistance and combination chemotherapy. Philos Trans R Soc Lond B Biol Sci. 1999;354(1384):739–49.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • WHO. Guidelines for the treatment of malaria. 2nd ed. Geneva: WHO; 2010.

    Google Scholar 

  • Wilson AL. A systematic review and meta-analysis of the efficacy and safety of intermittent preventive treatment of malaria in children (IPTc). PLoS One. 2011;6(2):e16976.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yuthavong Y, Yuvaniyama J, et al. Malarial (Plasmodium falciparum) dihydrofolate reductase-thymidylate synthase: structural basis for antifolate resistance and development of effective inhibitors. Parasitology. 2005;130(3):249–59.

    Article  PubMed  CAS  Google Scholar 

  • Yuthavong Y, Kamchonwongpaisan S, et al. Folate metabolism as a source of molecular targets for antimalarials. Future Microbiol. 2006;1(1):113–25.

    Article  PubMed  CAS  Google Scholar 

  • Yuthavong Y, Tarnchompoo B, et al. Malarial dihydrofolate reductase as a paradigm for drug development against a resistance-compromised target. Proc Natl Acad Sci U S A. 2012;109(42):16823–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yuvaniyama J, Chitnumsub P, et al. Insights into antifolate resistance from malarial DHFR-TS structures. Nat Struct Biol. 2003;10(5):357–65.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongyuth Yuthavong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Yuthavong, Y. (2013). Antifolate Drugs. In: Hommel, M., Kremsner, P. (eds) Encyclopedia of Malaria. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8757-9_2-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8757-9_2-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-8757-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics