Encyclopedia of Malaria

Living Edition
| Editors: Peter G. Kremsner, Sanjeev Krishna

Predictive Malaria Epidemiology, Models of Malaria Control Interventions and Elimination

  • Oliver J Watson
  • Isobel Routledge
  • Jamie T Griffin
  • Azra C Ghani
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8757-9_146-1

Predictive models of malaria interventions are mathematical tools to assist in quantifying the impact of malaria control initiatives and to guide the development, implementation, and optimization of future control interventions. Modern predictive models of malaria control are the result of numerous developments during the twentieth century starting with the initial entomological thresholds for elimination defined by Ronald Ross (Ross 1908) (see “Predictive Malaria Epidemiology: Development and Application of Mathematical Models of Malaria Transmission to Support and Measure Progress Towards Elimination of the Parasite.”). The “one-size-fits-all” campaign (Pampana 1969) deployed during both the Global Malaria Eradication Program (GMEP) (1955–1969) and the 1970s World Health Organization sponsored investigation within the Garki district of Nigeria highlighted the need for the heterogeneity in malaria endemicity to be considered within malaria control initiatives. The latter...

This is a preview of subscription content, log in to check access

References

  1. Anderson RM, May RM. Infectious diseases of humans: dynamics and control. viiOxford: Oxford University Press; 1991. 757 pp.Google Scholar
  2. Anderson RM, May RM, Gupta S. Non-linear phenomena in host – parasite interactions. Parasitology. 1989;99:59–79.CrossRefGoogle Scholar
  3. Antao T, Hastings IM. Environmental, pharmacological and genetic influences on the spread of drug-resistant malaria. Proc Biol Sci. 2011;278:1705–12.  https://doi.org/10.1098/rspb.2010.1907.CrossRefPubMedGoogle Scholar
  4. Aron JL. Mathematical modeling of immunity to malaria. Math Biosci. 1988;90:385–96.CrossRefGoogle Scholar
  5. Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207–11.  https://doi.org/10.1038/nature15535.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Brady OJ, Slater HC, Pemberton-Ross P, Wenger E, Maude RJ, Ghani AC, et al. Role of mass drug administration in elimination of Plasmodium falciparum malaria: a consensus modelling study. Lancet Glob Health. 2017;5:e680–7.  https://doi.org/10.1016/S2214-109X(17)30220-6.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cairns M, Ghani A, Okell L, Gosling R, Carneiro I, Anto F, et al. Modelling the protective efficacy of alternative delivery schedules for intermittent preventive treatment of malaria in infants and children. PLoS One. 2011;6(4):e18947.  https://doi.org/10.1371/journal.pone.0018947.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chitnis N, Schapira A, Smith T, Steketee R. Comparing the effectiveness of malaria vector-control interventions through a mathematical model. Am J Trop Med Hyg. 2010;83:230–40.  https://doi.org/10.4269/ajtmh.2010.09-0179.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dietz K, Wernsdorfer WH, McGregor I. Mathematical models for transmission and control of malaria. Malaria Princ Pract Malariol. 1988;2:1091–133.Google Scholar
  10. Dye C, Hasibeder G. Population dynamics of mosquito-borne disease: effects of flies which bite some people more frequently than others. Trans R Soc Trop Med Hyg. 1986;80:69–77.CrossRefPubMedGoogle Scholar
  11. Eckhoff PA. A malaria transmission-directed model of mosquito life cycle and ecology. Malar J. 2011;10:303.  https://doi.org/10.1186/1475-2875-10-303.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Eckhoff PA, Wenger EA, Godfray HCJ, Burt A. Impact of mosquito gene drive on malaria elimination in a computational model with explicit spatial and temporal dynamics. Proc Natl Acad Sci USA. 2016;114:E255–64.  https://doi.org/10.1073/pnas.1611064114.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Filipe JAN, Riley EM, Drakeley CJ, Sutherland CJ, Ghani AC. Determination of the processes driving the acquisition of immunity to malaria using a mathematical transmission model. PLoS Comput Biol. 2007;3:2569–79.  https://doi.org/10.1371/journal.pcbi.0030255.CrossRefGoogle Scholar
  14. Gatton ML, Cheng Q. Modeling the development of acquired clinical immunity to Plasmodium falciparum malaria. Infect Immun. 2004;72:6538–45.  https://doi.org/10.1128/IAI.72.11.6538.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gatton ML, Dunn J, Chaudhry A, Ciketic S, Cunningham J, Cheng Q. Implications of parasites lacking Plasmodium falciparum histidine-rich protein 2 on Malaria morbidity and control when rapid diagnostic tests are used for diagnosis. J Infect Dis. 2017;215:1156–66.  https://doi.org/10.1093/infdis/jix094.CrossRefPubMedGoogle Scholar
  16. Griffin JT, Bhatt S, Sinka ME, Gething PW, Lynch M, Patouillard E, et al. Potential for reduction of burden and local elimination of malaria by reducing Plasmodium falciparum malaria transmission: a mathematical modelling study. Lancet Infect Dis. 2016;3099:1–8.  https://doi.org/10.1016/S1473-3099(15)00423-5.Google Scholar
  17. Griffin JT, Hollingsworth TD, Reyburn H, Drakeley CJ, Riley EM, Ghani AC. Gradual acquisition of immunity to severe malaria with increasing exposure. Proc R Soc B Biol Sci. 2015;282:20142657.  https://doi.org/10.1098/rspb.2014.2657.CrossRefGoogle Scholar
  18. Gupta S, Snow RW, Donnelly CA, Marsh K, Newbold C. Immunity to non-cerebral severe malaria is acquired after one or two infections. Nat Med. 1999;5(3):340.CrossRefPubMedGoogle Scholar
  19. Gupta S, Swinton J, Anderson RM. Theoretical studies of the effects of heterogeneity in the parasite population on the transmission dynamics of malaria. Proc R Soc London Ser B-Biol Sci. 1994;256:231–8.  https://doi.org/10.1086/303379.CrossRefGoogle Scholar
  20. Hasibeder G, Dye C. Population dynamics of mosquito-borne disease: persistence in a completely heterogeneous environment. Theor Popul Biol. 1988;33:31–53.CrossRefPubMedGoogle Scholar
  21. Jakubowski A, Stearns SC, Kruk ME, Angeles G, Thirumurthy H. The US President’s Malaria Initiative and under-5 child mortality in sub-Saharan Africa: a difference-in-differences analysis. PLoS Med. 2017;14:1–20.  https://doi.org/10.1371/journal.pmed.1002319.CrossRefGoogle Scholar
  22. Johnston GL, Gething PW, Hay SI, Smith DL, Fidock DA. Modeling within-host effects of drugs on Plasmodium falciparum transmission and prospects for malaria elimination. PLoS Comput Biol. 2014;10(1):e1003434.  https://doi.org/10.1371/journal.pcbi.1003434.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Killeen GF, Fillinger U, Knols BGJ. Advantages of larval control for African malaria vectors: low mobility and behavioural responsiveness of immature mosquito stages allow high effective coverage. Malar J. 2002;1:8.  https://doi.org/10.1186/1475-2875-1-8.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kwiatkowski D, Nowak M. Periodic and chaotic host-parasite interactions in human malaria. Proc Natl Acad Sci USA. 1991;88:5111–3.  https://doi.org/10.1073/pnas.88.12.5111.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Mackinnon MJ. Drug resistance models for malaria. Acta Trop. 2005;94:207–17.  https://doi.org/10.1016/j.actatropica.2005.04.006.CrossRefPubMedGoogle Scholar
  26. Maude RJ, Socheat D, Nguon C, Saroth P, Dara P, Li G, et al. Optimising strategies for Plasmodium falciparum Malaria elimination in Cambodia: primaquine, mass drug administration and Artemisinin resistance. PLoS One. 2012;7(5):e37166.  https://doi.org/10.1371/journal.pone.0037166.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Le Menach A, Takala S, McKenzie FE, Perisse A, Harris A, Flahault A, et al. An elaborated feeding cycle model for reductions in vectorial capacity of night-biting mosquitoes by insecticide-treated nets. Malar J. 2007;6:10.  https://doi.org/10.1186/1475-2875-6-10.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Nájera JA, González-Silva M, Alonso PL. Some lessons for the future from the global malaria eradication programme (1955–1969). PLoS Med. 2011;8(1):e1000412.  https://doi.org/10.1371/journal.pmed.1000412.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Nguyen TD, Olliaro P, Dondorp AM, Baird JK, Lam HM, Farrar J, et al. Optimum population-level use of artemisinin combination therapies: a modelling study. Lancet Glob Health. 2015;3:e758–66.  https://doi.org/10.1016/S2214-109X(15)00162-X.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Okell LC, Griffin JT, Kleinschmidt I, Hollingsworth TD, Churcher TS, White MJ, et al. The potential contribution of mass treatment to the control of Plasmodium falciparum malaria. PLoS One. 2011;6(5):e20179.  https://doi.org/10.1371/journal.pone.0020179.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Okumu FO, Moore SJ. Combining indoor residual spraying and insecticide-treated nets for malaria control in Africa: a review of possible outcomes and an outline of suggestions for the future. Malar J. 2011;10:208.  https://doi.org/10.1186/1475-2875-10-208.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Pampana E. A textbook of malaria eradication. 2nd ed. London: Oxford University Press; 1969.Google Scholar
  33. Pemberton-Ross P, Smith TA, Hodel EM, Kay K, Penny MA. Age-shifting in malaria incidence as a result of induced immunological deficit: a simulation study. Malar J. 2015;14:287.  https://doi.org/10.1186/s12936-015-0805-1.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Penny MA, Verity R, Bever CA, Sauboin C, Galactionova K, Flasche S, et al. Public health impact and cost-effectiveness of the RTS,S/AS01 malaria vaccine: a systematic comparison of predictions from four mathematical models. Lancet. 2016;387:367–75.  https://doi.org/10.1016/S0140-6736(15)00725-4.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Recker M, Buckee CO, Serazin A, Kyes S, Pinches R, Christodoulou Z, et al. Antigenic variation in Plasmodium falciparum malaria involves a highly structured switching pattern. PLoS Pathog. 2011;7(3):e1001306.  https://doi.org/10.1371/journal.ppat.1001306.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ross R. Prevention of malaria in Mauritius. London: Waterlow Sons Ltd; 1908.Google Scholar
  37. Slater HC, Ross A, Ouédraogo AL, White LJ, Nguon C, Walker PGT, et al. Assessing the impact of next-generation rapid diagnostic tests on Plasmodium falciparum malaria elimination strategies. Nature. 2015;528(7580):S94–101.  https://doi.org/10.1038/nature16040.CrossRefPubMedGoogle Scholar
  38. Slater HC, Walker PGT, Bousema T, Okell LC, Ghani AC. The potential impact of adding ivermectin to a mass treatment intervention to reduce malaria transmission: a modelling study. J Infect Dis. 2014;210:1972–80.  https://doi.org/10.1093/infdis/jiu351.CrossRefPubMedGoogle Scholar
  39. Smith DL, Klein EY, McKenzie FE, Laxminarayan R. Prospective strategies to delay the evolution of anti-malarial drug resistance: weighing the uncertainty. Malar J. 2010;9:217.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Smith T, Maire N, Ross A, Penny M, Chitnis N, Schapira A, et al. Towards a comprehensive simulation model of malaria epidemiology and control. Parasitology. 2008;135:1507–16.  https://doi.org/10.1017/S0031182008000371.CrossRefPubMedGoogle Scholar
  41. Snow RW, Marsh K. Will reducing Plasmodium falciparum transmission alter malaria mortality among African children? Parasitol Today. 1995;11(5):188–90.CrossRefGoogle Scholar
  42. Stuckey EM, Stevenson J, Galactionova K, Baidjoe AY, Bousema T, Odongo W, et al. Modeling the cost effectiveness of malaria control interventions in the highlands of western Kenya. PLoS One. 2014;9(10):e107700.  https://doi.org/10.1371/journal.pone.0107700.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Walker PGT, Floyd J, ter Kuile F, Cairns M. Estimated impact on birth weight of scaling up intermittent preventive treatment of malaria in pregnancy given sulphadoxine-pyrimethamine resistance in Africa: a mathematical model. PLoS Med. 2017;14:1–19.  https://doi.org/10.1371/journal.pmed.1002243.CrossRefGoogle Scholar
  44. Walker PGT, Griffin JT, Ferguson NM, Ghani AC, Alonso P, Tanner M, et al. Estimating the most efficient allocation of interventions to achieve reductions in Plasmodium falciparum malaria burden and transmission in Africa: a modelling study. Lancet Glob Health. 2016;4:e474–84.  https://doi.org/10.1016/S2214-109X(16)30073-0.CrossRefPubMedGoogle Scholar
  45. Walker PGT, White MT, Griffin JT, Reynolds A, Ferguson NM, Ghani AC. Malaria morbidity and mortality in Ebola-affected countries caused by decreased health-care capacity, and the potential effect of mitigation strategies: a modelling analysis. Lancet Infect Dis. 2015;15:825–32.  https://doi.org/10.1016/S1473-3099(15)70124-6.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Watson OJ, Slater HC, Verity R, Parr JB, Mwandagalirwa MK, Tshefu A, et al. Modelling the drivers of the spread of Plasmodium falciparum hrp2 gene deletions in sub-Saharan Africa. elife. 2017;6:e25008.  https://doi.org/10.7554/eLife.25008.PubMedPubMedCentralGoogle Scholar
  47. White MT, Conteh L, Cibulskis R, Ghani AC. Costs and cost-effectiveness of malaria control interventions – a systematic review. Malar J. 2011;10:337.  https://doi.org/10.1186/1475-2875-10-337.CrossRefPubMedPubMedCentralGoogle Scholar
  48. White MT, Karl S, Battle KE, Hay SI, Mueller I, Ghani AC. Modelling the contribution of the hypnozoite reservoir to Plasmodium vivax transmission. elife. 2014;3:1–19.  https://doi.org/10.7554/eLife.04692.CrossRefGoogle Scholar
  49. Winskill P, Walker PG, Griffin JT, Ghani AC. Modelling the cost-effectiveness of introducing the RTS,S malaria vaccine relative to scaling up other malaria interventions in sub-Saharan Africa. BMJ Glob Health. 2017;2:e000090.  https://doi.org/10.1136/bmjgh-2016-000090.CrossRefPubMedPubMedCentralGoogle Scholar
  50. World Health Organization. New or updated WHO guidance, issued in line with MPAC recommendations. 2017. http://www.who.int/malaria/mpac/policyrecommendations/en/. Accessed 7 Oct 2017.
  51. Zhu L, Marshall JM, Qualls WA, Schlein Y, McManus JW, Arheart KL, et al. Modelling optimum use of attractive toxic sugar bait stations for effective malaria vector control in Africa. Malar J. 2015;14:492.  https://doi.org/10.1186/s12936-015-1012-9.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Oliver J Watson
    • 1
  • Isobel Routledge
    • 1
  • Jamie T Griffin
    • 2
  • Azra C Ghani
    • 1
  1. 1.MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease EpidemiologyImperial College LondonLondonUK
  2. 2.School of Mathematical SciencesQueen Mary University of LondonLondonUK