Skip to main content

Host Genetic Predisposition to Malaria

  • Living reference work entry
  • First Online:
Encyclopedia of Malaria

Introduction

The notion of innate genetic differences in susceptibility to malaria was initially proposed by Haldane in his “malaria hypothesis,” which suggested that certain deleterious mutations may be under positive selection because they decrease susceptibility to severe malaria (Haldane 1949). In 1954, A.C. Allison published the first evidence-based study supporting the malaria hypothesis, in which he observed both a lower prevalence of parasitemia and a lower parasite density in Ugandan children with sickle cell trait compared to those with normal red blood cells (Allison 1954). This association suggested that the sickle cell allele, which was fatal when homozygous, was protective against malaria when heterozygous. Further, it provided an evolutionary explanation for why sickle trait was so common in populations where malaria was hyper-endemic. It is now well-established that red blood cell polymorphisms that provide protection against severe malaria have risen to high rates in...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ackerman HC, et al. Complex haplotypic structure of the central MHC region flanking TNF in a West African population. Genes Immun. 2003;4:476–86.

    Article  CAS  PubMed  Google Scholar 

  • Ahearn JM, Fearon DT. Structure and function of the complement receptors, CR1 (CD35) and CR2 (CD21). Adv Immunol. 1989;46:183–219.

    Article  CAS  PubMed  Google Scholar 

  • Aidoo M, et al. Tumor necrosis factor-alpha promoter variant 2 (TNF2) is associated with pre-term delivery, infant mortality, and malaria morbidity in western Kenya: Asembo Bay Cohort Project IX. Genet Epidemiol. 2001;21:201–11.

    Article  CAS  PubMed  Google Scholar 

  • Aidoo M, et al. Protective effects of the sickle cell gene against malaria morbidity and mortality. Lancet. 2002;359:1311–2.

    Article  CAS  PubMed  Google Scholar 

  • Ali IM, et al. Host candidate gene polymorphisms and associated clearance of P. falciparum amodiaquine and fansidar resistance mutants in children less than 5 years in Cameroon. Pathog Glob Health. 2014;108:323–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen SJ, et al. alpha+-Thalassemia protects children against disease caused by other infections as well as malaria. Proc Natl Acad Sci USA. 1997;94:14736–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen SJ, et al. Prevention of cerebral malaria in children in Papua New Guinea by southeast Asian ovalocytosis band 3. Am J Trop Med Hyg. 1999;60:1056–60.

    Article  CAS  PubMed  Google Scholar 

  • Allison AC. Protection afforded by sickle-cell trait against subtertian malareal infection. Br Med J. 1954;1:290–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allison AC. Polymorphism and natural selection in human populations. Cold Spring Harb Symp Quant Biol. 1965;29:137–49.

    Article  Google Scholar 

  • Allison AC, Clyde DF. Malaria in African children with deficient erythrocyte glucose-6-phosphate dehydrogenase. Br Med J. 1961;1:1346–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amir el AD, et al. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol. 2013;31: 545–52.

    Article  CAS  Google Scholar 

  • Apinjoh TO, et al. Association of cytokine and Toll-like receptor gene polymorphisms with severe malaria in three regions of Cameroon. PLoS One. 2013;8:e81071.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arie T, et al. Hemoglobin C modulates the surface topography of Plasmodium falciparum-infected erythrocytes. J Struct Biol. 2005;150:163–9.

    Article  CAS  PubMed  Google Scholar 

  • Ariey F, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014;505:50–5.

    Article  PubMed  CAS  Google Scholar 

  • Artavanis-Tsakonas K, et al. The war between the malaria parasite and the immune system: immunity, immunoregulation and immunopathology. Clin Exp Immunol. 2003;133:145–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aucan C, et al. Interferon-alpha receptor-1 (IFNAR1) variants are associated with protection against cerebral malaria in the Gambia. Genes Immun. 2003;4:275–82.

    Article  CAS  PubMed  Google Scholar 

  • Ayi K, et al. Enhanced phagocytosis of ring-parasitized mutant erythrocytes: a common mechanism that may explain protection against falciparum malaria in sickle trait and beta-thalassemia trait. Blood. 2004;104:3364–71.

    Article  CAS  PubMed  Google Scholar 

  • Ayi K, et al. Pyruvate kinase deficiency and malaria. N Engl J Med. 2008;358:1805–10.

    Article  CAS  PubMed  Google Scholar 

  • Balmer P, et al. The effect of nitric oxide on the growth of Plasmodium falciparum, P. chabaudi and P. berghei in vitro. Parasite Immunol. 2000;22:97–106.

    Article  CAS  PubMed  Google Scholar 

  • Bennett S, et al. Human leucocyte antigen (HLA) and malaria morbidity in a Gambian community. Trans R Soc Trop Med Hyg. 1993;87:286–7.

    Article  CAS  PubMed  Google Scholar 

  • Booth PB, McLoughlin K. The Gerbich blood group system, especially in Melanesians. Vox Sang. 1972;22:73–84.

    Article  CAS  PubMed  Google Scholar 

  • Bostrom S, et al. Changes in the levels of cytokines, chemokines and malaria-specific antibodies in response to Plasmodium falciparum infection in children living in sympatry in Mali. Malar J. 2012;11:109.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boutlis CS, et al. Inducible nitric oxide synthase (NOS2) promoter CCTTT repeat polymorphism: relationship to in vivo nitric oxide production/NOS activity in an asymptomatic malaria-endemic population. Am J Trop Med Hyg. 2003;69:569–73.

    Article  CAS  PubMed  Google Scholar 

  • Bredt DS, Snyder SH. Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem. 1994;63:175–95.

    Article  CAS  PubMed  Google Scholar 

  • Burgmann H, et al. Levels of stem cell factor and interleukin-3 in serum in acute Plasmodium falciparum malaria. Clin Diagn Lab Immunol. 1997;4:226–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burgner D, et al. Inducible nitric oxide synthase polymorphism and fatal cerebral malaria. Lancet. 1998;352:1193–4.

    Article  CAS  PubMed  Google Scholar 

  • Cabantous S, et al. Evidence that interferon-gamma plays a protective role during cerebral malaria. J Infect Dis. 2005;192:854–60.

    Article  CAS  PubMed  Google Scholar 

  • Cabantous S, et al. Alleles 308A and 238A in the tumor necrosis factor alpha gene promoter do not increase the risk of severe malaria in children with Plasmodium falciparum infection in Mali. Infect Immun. 2006;74:7040–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabantous S, et al. Genetic evidence for the aggravation of Plasmodium falciparum malaria by interleukin 4. J Infect Dis. 2009;200:1530–9.

    Article  CAS  PubMed  Google Scholar 

  • Cabantous S, et al. Genotype combinations of two IL4 polymorphisms influencing IL-4 plasma levels are associated with different risks of severe malaria in the Malian population. Immunogenetics. 2015;67:283–8.

    Article  CAS  PubMed  Google Scholar 

  • Campino S, et al. TLR9 polymorphisms in African populations: no association with severe malaria, but evidence of cis-variants acting on gene expression. Malar J. 2009;8:44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cappadoro M, et al. Early phagocytosis of glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes parasitized by Plasmodium falciparum may explain malaria protection in G6PD deficiency. Blood. 1998;92:2527–34.

    CAS  PubMed  Google Scholar 

  • Carlson J, Wahlgren M. Plasmodium falciparum erythrocyte rosetting is mediated by promiscuous lectin-like interactions. J Exp Med. 1992;176:1311–7.

    Article  CAS  PubMed  Google Scholar 

  • Carvalho LH, et al. IL-4-secreting CD4+ T cells are crucial to the development of CD8+ T-cell responses against malaria liver stages. Nat Med. 2002;8:166–70.

    Article  CAS  PubMed  Google Scholar 

  • Cattani JA, et al. Hereditary ovalocytosis and reduced susceptibility to malaria in Papua New Guinea. Trans R Soc Trop Med Hyg. 1987;81:705–9.

    Article  CAS  PubMed  Google Scholar 

  • Chang SH, Dong C. IL-17F: regulation, signaling and function in inflammation. Cytokine. 2009;46:7–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chartrain NA, et al. Molecular cloning, structure, and chromosomal localization of the human inducible nitric oxide synthase gene. J Biol Chem. 1994;269:6765–72.

    CAS  PubMed  Google Scholar 

  • Chotivanich KT, et al. Rosetting characteristics of uninfected erythrocytes from healthy individuals and malaria patients. Ann Trop Med Parasitol. 1998;92:45–56.

    Article  CAS  PubMed  Google Scholar 

  • Clark IA, et al. Inhibition of murine malaria (Plasmodium chabaudi) in vivo by recombinant interferon-gamma or tumor necrosis factor, and its enhancement by butylated hydroxyanisole. J Immunol. 1987;139:3493–6.

    CAS  PubMed  Google Scholar 

  • Clark TG, et al. Tumor necrosis factor and lymphotoxin-alpha polymorphisms and severe malaria in African populations. J Infect Dis. 2009;199:569–75.

    Article  CAS  PubMed  Google Scholar 

  • Coban C, et al. Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. J Exp Med. 2005;201:19–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cockburn IA, et al. A human complement receptor 1 polymorphism that reduces Plasmodium falciparum rosetting confers protection against severe malaria. Proc Natl Acad Sci USA. 2004;101:272–7.

    Article  CAS  PubMed  Google Scholar 

  • Contreras M, et al. The MNSs antigen Ridley (Ria). Vox Sang. 1984;46:360–5.

    Article  CAS  PubMed  Google Scholar 

  • Cortes A, et al. Adhesion of Plasmodium falciparum-infected red blood cells to CD36 under flow is enhanced by the cerebral malaria-protective trait South-East Asian ovalocytosis. Mol Biochem Parasitol. 2005;142:252–7.

    Article  CAS  PubMed  Google Scholar 

  • Cramer JP, et al. iNOS promoter variants and severe malaria in Ghanaian children. Tropical Med Int Health. 2004;9:1074–80.

    Article  CAS  Google Scholar 

  • Culleton RL, et al. Failure to detect Plasmodium vivax in West and Central Africa by PCR species typing. Malar J. 2008;7:174.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Curtidor H, et al. Specific erythrocyte binding capacity and biological activity of Plasmodium falciparum erythrocyte binding ligand 1 (EBL-1)-derived peptides. Protein Sci. 2005;14:464–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cyrklaff M, et al. Hemoglobins S and C interfere with actin remodeling in Plasmodium falciparum-infected erythrocytes. Science. 2011;334:1283–6.

    Article  CAS  PubMed  Google Scholar 

  • Dahr W, et al. The Dantu erythrocyte phenotype of the NE variety. I. Dodecylsulfate polyacrylamide gel electrophoretic studies. Blut. 1987;55:19–31.

    Article  CAS  PubMed  Google Scholar 

  • Daniels G. The molecular genetics of blood group polymorphism. Transpl Immunol. 2005;14:143–53.

    Article  CAS  PubMed  Google Scholar 

  • Daniels G. Human Blood Groups. Somerset: Wiley; 2013.

    Book  Google Scholar 

  • Dankwa S, et al. Genetic evidence for erythrocyte receptor glycophorin B expression levels defining a dominant Plasmodium falciparum invasion pathway into human erythrocytes. Infect Immun. 2017;85:1–15.

    Google Scholar 

  • Dejean AS, et al. Transcription factor Foxo3 controls the magnitude of T cell immune responses by modulating the function of dendritic cells. Nat Immunol. 2009;10:504–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhangadamajhi G, et al. The CCTTT pentanucleotide microsatellite in iNOS promoter influences the clinical outcome in P. falciparum infection. Parasitol Res. 2009;104:1315–20.

    Article  CAS  PubMed  Google Scholar 

  • Diakite M, et al. A genetic association study in the Gambia using tagging polymorphisms in the major histocompatibility complex class III region implicates a HLA-B associated transcript 2 polymorphism in severe malaria susceptibility. Hum Genet. 2009;125:105–9.

    Article  CAS  PubMed  Google Scholar 

  • Diallo DA, et al. A comparison of anemia in hemoglobin C and normal hemoglobin A children with Plasmodium falciparum malaria. Acta Trop. 2004;90:295–9.

    Article  CAS  PubMed  Google Scholar 

  • Dudakov JA, et al. Interleukin-22: immunobiology and pathology. Annu Rev Immunol. 2015;33:747–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunstan SJ, et al. Variation in human genes encoding adhesion and proinflammatory molecules are associated with severe malaria in the Vietnamese. Genes Immun. 2012;13:503–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duraisingh MT, et al. Erythrocyte-binding antigen 175 mediates invasion in Plasmodium falciparum utilizing sialic acid-dependent and -independent pathways. Proc Natl Acad Sci USA. 2003;100:4796–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Sahly HM, et al. Safety and immunogenicity of a recombinant nonglycosylated erythrocyte binding antigen 175 Region II malaria vaccine in healthy adults living in an area where malaria is not endemic. Clin Vaccine Immunol. 2010;17:1552–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Enevold A, et al. Associations between alpha+-thalassemia and Plasmodium falciparum malarial infection in northeastern Tanzania. J Infect Dis. 2007;196:451–9.

    Article  PubMed  Google Scholar 

  • Engwerda CR, et al. Locally up-regulated lymphotoxin alpha, not systemic tumor necrosis factor alpha, is the principle mediator of murine cerebral malaria. J Exp Med. 2002;195:1371–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eskdale J, Gallagher G. A polymorphic dinucleotide repeat in the human IL-10 promoter. Immunogenetics. 1995;42:444–5.

    Article  CAS  PubMed  Google Scholar 

  • Esposito S, et al. Role of polymorphisms of toll-like receptor (TLR) 4, TLR9, toll-interleukin 1 receptor domain containing adaptor protein (TIRAP) and FCGR2A genes in malaria susceptibility and severity in Burundian children. Malar J. 2012;11:196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Facer CA. Erythrocyte sialoglycoproteins and Plasmodium falciparum invasion. Trans R Soc Trop Med Hyg. 1983;77:524–30.

    Article  CAS  PubMed  Google Scholar 

  • Fairhurst RM, et al. Abnormal display of PfEMP-1 on erythrocytes carrying haemoglobin C may protect against malaria. Nature. 2005;435:1117–21.

    Article  CAS  PubMed  Google Scholar 

  • Fang FC. Perspectives series: host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity. J Clin Invest. 1997;99:2818–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Favre N, et al. The course of Plasmodium chabaudi chabaudi infections in interferon-gamma receptor deficient mice. Parasite Immunol. 1997;19:375–83.

    Article  CAS  PubMed  Google Scholar 

  • Ferreira A, et al. Inhibition of development of exoerythrocytic forms of malaria parasites by gamma-interferon. Science. 1986;232:881–4.

    Article  CAS  PubMed  Google Scholar 

  • Ferreira A, et al. Sickle hemoglobin confers tolerance to Plasmodium infection. Cell. 2011;145:398–409.

    Article  CAS  PubMed  Google Scholar 

  • Field SP, et al. Glycophorin variants and Plasmodium falciparum: protective effect of the Dantu phenotype in vitro. Hum Genet. 1994;93:148–50.

    Article  CAS  PubMed  Google Scholar 

  • Fischer PR, Boone P. Short report: severe malaria associated with blood group. Am J Trop Med Hyg. 1998;58:122–3.

    Article  CAS  PubMed  Google Scholar 

  • Flint J, et al. High frequencies of alpha-thalassaemia are the result of natural selection by malaria. Nature. 1986;321:744–50.

    Article  CAS  PubMed  Google Scholar 

  • Flint J, et al. The population genetics of the haemoglobinopathies. Baillieres Clin Haematol. 1998;11:1–51, Elsevier.

    Article  CAS  PubMed  Google Scholar 

  • Flori L, et al. TNF as a malaria candidate gene: polymorphism-screening and family-based association analysis of mild malaria attack and parasitemia in Burkina Faso. Genes Immun. 2005;6:472–80.

    Article  CAS  PubMed  Google Scholar 

  • Fraser GR, et al. Population genetic studies in the Congo. 3. Blood groups (ABO, MNSs, Rh, Jsa). Am J Hum Genet. 1966;18:546–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman MJ, et al. The role of hemoglobins C, S, and Nbalt in the inhibition of malaria parasite development in vitro. Am J Trop Med Hyg. 1979;28:777–80.

    Article  CAS  PubMed  Google Scholar 

  • Fucharoen S, Weatherall DJ. The hemoglobin E thalassemias. Cold Spring Harb Perspect Med. 2012;2:a011734.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Furthmayr H. Glycophorins A, B, and C: a family of sialoglycoproteins. Isolation and preliminary characterization of trypsin derived peptides. J Supramol Struct. 1978;9:79–95.

    Article  CAS  PubMed  Google Scholar 

  • Garcia A, et al. Linkage analysis of blood Plasmodium falciparum levels: interest of the 5q31–q33 chromosome region. Am J Trop Med Hyg. 1998;58:705–9.

    Article  CAS  PubMed  Google Scholar 

  • Garcia A, et al. Association of HLA-G 3′UTR polymorphisms with response to malaria infection: a first insight. Infect Genet Evol. 2013;16:263–9.

    Article  CAS  PubMed  Google Scholar 

  • Gardner B, et al. Epitopes on sialoglycoprotein alpha: evidence for heterogeneity in the molecule. Immunology. 1989;68:283–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gately MK, et al. The interleukin-12/interleukin-12-receptor system: role in normal and pathologic immune responses. Annu Rev Immunol. 1998;16:495–521.

    Article  CAS  PubMed  Google Scholar 

  • Genton B, et al. Ovalocytosis and cerebral malaria. Nature. 1995;378:564–5.

    Article  CAS  PubMed  Google Scholar 

  • Gichohi-Wainaina WN, et al. Tumour necrosis factor allele variants and their association with the occurrence and severity of malaria in African children: a longitudinal study. Malar J. 2015;14:249.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gilles HM, et al. Glucose-6-phosphate-dehydrogenase deficiency, sickling, and malaria in African children in South Western Nigeria. Lancet. 1967;1:138–40.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg AC, Rizzo LV. MHC structure and function – antigen presentation. Part 1. Einstein (Sao Paulo). 2015;13:153–6.

    Article  Google Scholar 

  • Gong L, et al. Evidence for both innate and acquired mechanisms of protection from Plasmodium falciparum in children with sickle cell trait. Blood. 2012;119:3808–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goonasekera HW, et al. Population screening for hemoglobinopathies. Annu Rev Genomics Hum Genet. 2018;19(1):355–80.

    Article  CAS  PubMed  Google Scholar 

  • Gouagna LC, et al. Genetic variation in human HBB is associated with Plasmodium falciparum transmission. Nat Genet. 2010;42:328–31.

    Article  CAS  PubMed  Google Scholar 

  • Grau GE, et al. Tumor necrosis factor and disease severity in children with falciparum malaria. N Engl J Med. 1989;320:1586–91.

    Article  CAS  PubMed  Google Scholar 

  • Green SJ, et al. Cellular mechanisms of nonspecific immunity to intracellular infection: cytokine-induced synthesis of toxic nitrogen oxides from L-arginine by macrophages and hepatocytes. Immunol Lett. 1990;25:15–9.

    Article  CAS  PubMed  Google Scholar 

  • Greene JA, et al. Toll-like receptor polymorphisms and cerebral malaria: TLR2 Delta22 polymorphism is associated with protection from cerebral malaria in a case control study. Malar J. 2012;11:47.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guindo A, et al. X-linked G6PD deficiency protects hemizygous males but not heterozygous females against severe malaria. PLoS Med. 2007;4:e66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hahn WO, et al. A common TLR1 polymorphism is associated with higher parasitaemia in a Southeast Asian population with Plasmodium falciparum malaria. Malar J. 2016;15:12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haldane J. The rate of mutation of human genes. Hereditas. 1949;35:267–273.

    Article  Google Scholar 

  • Hamann L, et al. The toll-like receptor 1 variant S248N influences placental malaria. Infect Genet Evol. 2010;10:785–9.

    Article  CAS  PubMed  Google Scholar 

  • Hananantachai H, et al. Lack of association of −308A/G TNFA promoter and 196R/M TNFR2 polymorphisms with disease severity in Thai adult malaria patients. Am J Med Genet. 2001;102:391–2.

    Article  CAS  PubMed  Google Scholar 

  • Hananantachai H, et al. Significant association between TNF-alpha (TNF) promoter allele (-1031C, −863C, and −857C) and cerebral malaria in Thailand. Tissue Antigens. 2007;69:277–80.

    Article  CAS  PubMed  Google Scholar 

  • Hill AV, et al. Common west African HLA antigens are associated with protection from severe malaria. Nature. 1991;352:595–600.

    Article  CAS  PubMed  Google Scholar 

  • Hill AV, et al. Human leukocyte antigens and natural selection by malaria. Philos Trans R Soc Lond Ser B Biol Sci. 1994;346:379–85.

    Article  CAS  Google Scholar 

  • Hobbs MR, et al. A new NOS2 promoter polymorphism associated with increased nitric oxide production and protection from severe malaria in Tanzanian and Kenyan children. Lancet. 2002;360:1468–75.

    Article  CAS  PubMed  Google Scholar 

  • Hutagalung R, et al. Influence of hemoglobin E trait on the severity of Falciparum malaria. J Infect Dis. 1999;179:283–6.

    Article  CAS  PubMed  Google Scholar 

  • Iwalokun BA, et al. Toll-like receptor (TLR4) Asp299Gly and Thr399Ile polymorphisms in relation to clinical falciparum malaria among Nigerian children: a multisite cross-sectional immunogenetic study in Lagos. Genes Environ. 2015;37:3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Janeway Jr CA, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20:197–216.

    Article  CAS  PubMed  Google Scholar 

  • Jha AN, et al. IL-4 haplotype −590T, −34T and intron-3 VNTR R2 is associated with reduced malaria risk among ancestral indian tribal populations. PLoS One. 2012;7:e48136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang L, et al. Evidence for erythrocyte-binding antigen 175 as a component of a ligand-blocking blood-stage malaria vaccine. Proc Natl Acad Sci USA. 2011;108:7553–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanchan K, et al. Interferon-gamma (IFNG) microsatellite repeat and single nucleotide polymorphism haplotypes of IFN-alpha receptor (IFNAR1) associated with enhanced malaria susceptibility in Indian populations. Infect Genet Evol. 2015;29:6–14.

    Article  CAS  PubMed  Google Scholar 

  • Kar A, et al. Influence of common variants of TLR4 and TLR9 on clinical outcomes of Plasmodium falciparum malaria in Odisha, India. Infect Genet Evol. 2015;36:356–62.

    Article  CAS  PubMed  Google Scholar 

  • Khor CC, et al. Positive replication and linkage disequilibrium mapping of the chromosome 21q22.1 malaria susceptibility locus. Genes Immun. 2007;8:570–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knight JC, et al. A polymorphism that affects OCT-1 binding to the TNF promoter region is associated with severe malaria. Nat Genet. 1999;22:145–50.

    Article  CAS  PubMed  Google Scholar 

  • Ko WY, et al. Effects of natural selection and gene conversion on the evolution of human glycophorins coding for MNS blood polymorphisms in malaria-endemic African populations. Am J Hum Genet. 2011;88:741–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch M, Baum J. The mechanics of malaria parasite invasion of the human erythrocyte – towards a reassessment of the host cell contribution. Cell Microbiol. 2016;18:319–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch O, et al. IFNGR1 gene promoter polymorphisms and susceptibility to cerebral malaria. J Infect Dis. 2002;185:1684–7.

    Article  CAS  PubMed  Google Scholar 

  • Koch O, et al. Investigation of malaria susceptibility determinants in the IFNG/IL26/IL22 genomic region. Genes Immun. 2005;6:312–8.

    Article  CAS  PubMed  Google Scholar 

  • Krause MA, et al. alpha-Thalassemia impairs the cytoadherence of Plasmodium falciparum-infected erythrocytes. PLoS One. 2012;7:e37214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kremsner PG, et al. High plasma levels of nitrogen oxides are associated with severe disease and correlate with rapid parasitological and clinical cure in Plasmodium falciparum malaria. Trans R Soc Trop Med Hyg. 1996;90:44–7.

    Article  CAS  PubMed  Google Scholar 

  • Krishnegowda G, et al. Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum: cell signaling receptors, glycosylphosphatidylinositol (GPI) structural requirement, and regulation of GPI activity. J Biol Chem. 2005;280:8606–16.

    Article  CAS  PubMed  Google Scholar 

  • Kumar H, et al. Toll-like receptors and innate immunity. Biochem Biophys Res Commun. 2009;388:621–5.

    Article  CAS  PubMed  Google Scholar 

  • Kumaratilake LM, Ferrante A. IL-4 inhibits macrophage-mediated killing of Plasmodium falciparum in vitro. A possible parasite-immune evasion mechanism. J Immunol. 1992;149:194–9.

    CAS  PubMed  Google Scholar 

  • Kun JF, et al. Polymorphism in promoter region of inducible nitric oxide synthase gene and protection against malaria. Lancet. 1998;351:265–6.

    Article  CAS  PubMed  Google Scholar 

  • Kun JF, et al. Nitric oxide synthase 2(Lambarene) (G-954C), increased nitric oxide production, and protection against malaria. J Infect Dis. 2001;184:330–6.

    Article  CAS  PubMed  Google Scholar 

  • Kurtzhals JA, et al. The cytokine balance in severe malarial anemia. J Infect Dis. 1999;180:1753–5.

    Article  CAS  PubMed  Google Scholar 

  • Kwiatkowski D. Malarial toxins and the regulation of parasite density. Parasitol Today. 1995;11:206–12.

    Article  CAS  PubMed  Google Scholar 

  • Kwiatkowski D, et al. TNF concentration in fatal cerebral, non-fatal cerebral, and uncomplicated Plasmodium falciparum malaria. Lancet. 1990;336:1201–4.

    Article  CAS  PubMed  Google Scholar 

  • Lalani I, et al. Interleukin-10: biology, role in inflammation and autoimmunity. Ann Allergy Asthma Immunol. 1997;79:469–83.

    Article  CAS  PubMed  Google Scholar 

  • LaMonte G, et al. Translocation of sickle cell erythrocyte microRNAs into Plasmodium falciparum inhibits parasite translation and contributes to malaria resistance. Cell Host Microbe. 2012;12:187–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langhorne J, et al. Immunity to malaria: more questions than answers. Nat Immunol. 2008;9:725–32.

    Article  CAS  PubMed  Google Scholar 

  • Leffler EM, et al. Resistance to malaria through structural variation of red blood cell invasion receptors. Science. 2017;356:eaam6393.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lell B, et al. The role of red blood cell polymorphisms in resistance and susceptibility to malaria. Clin Infect Dis. 1999;28:794–9.

    Article  CAS  PubMed  Google Scholar 

  • Leoratti FM, et al. Variants in the toll-like receptor signaling pathway and clinical outcomes of malaria. J Infect Dis. 2008;198:772–80.

    Article  CAS  PubMed  Google Scholar 

  • Levesque MC, et al. Nitric oxide synthase type 2 promoter polymorphisms, nitric oxide production, and disease severity in Tanzanian children with malaria. J Infect Dis. 1999;180:1994–2002.

    Article  CAS  PubMed  Google Scholar 

  • Levings MK, et al. The role of IL-10 and TGF-beta in the differentiation and effector function of T regulatory cells. Int Arch Allergy Immunol. 2002;129:263–76.

    Article  CAS  PubMed  Google Scholar 

  • Li X, et al. Identification of a specific region of Plasmodium falciparum EBL-1 that binds to host receptor glycophorin B and inhibits merozoite invasion in human red blood cells. Mol Biochem Parasitol. 2012;183:23–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin E, et al. Minimal association of common red blood cell polymorphisms with Plasmodium falciparum infection and uncomplicated malaria in Papua New Guinean school children. Am J Trop Med Hyg. 2010;83:828–33.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopaticki S, et al. Reticulocyte and erythrocyte binding-like proteins function cooperatively in invasion of human erythrocytes by malaria parasites. Infect Immun. 2011;79:1107–17.

    Article  CAS  PubMed  Google Scholar 

  • Lopez AF, et al. Recombinant human interleukin-3 stimulation of hematopoiesis in humans: loss of responsiveness with differentiation in the neutrophilic myeloid series. Blood. 1988;72:1797–804.

    CAS  PubMed  Google Scholar 

  • Luzzatto L, et al. Glucose-6-phosphate dehydrogenase deficient red cells: resistance to infection by malarial parasites. Science. 1969;164:839–42.

    Article  CAS  PubMed  Google Scholar 

  • Lwanira CN, et al. Prevalence of polymorphisms in glucose-6-phosphate dehydrogenase, sickle haemoglobin and nitric oxide synthase genes and their relationship with incidence of uncomplicated malaria in Iganga, Uganda. Malar J. 2017;16:322.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lyke KE, et al. Serum levels of the proinflammatory cytokines interleukin-1 beta (IL-1beta), IL-6, IL-8, IL-10, tumor necrosis factor alpha, and IL-12(p70) in Malian children with severe Plasmodium falciparum malaria and matched uncomplicated malaria or healthy controls. Infect Immun. 2004;72:5630–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyke KE, et al. Association of HLA alleles with Plasmodium falciparum severity in Malian children. Tissue Antigens. 2011;77:562–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machado P, et al. Malaria: looking for selection signatures in the human PKLR gene region. Br J Haematol. 2010;149:775–84.

    Article  CAS  PubMed  Google Scholar 

  • Mackinnon MJ, et al. Heritability of malaria in Africa. PLoS Med. 2005;2:e340.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maier AG, et al. Plasmodium falciparum erythrocyte invasion through glycophorin C and selection for Gerbich negativity in human populations. Nat Med. 2003;9:87–92.

    Article  CAS  PubMed  Google Scholar 

  • Maiga B, et al. Human candidate polymorphisms in sympatric ethnic groups differing in malaria susceptibility in Mali. PLoS One. 2013;8:e75675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malaria Genomic Epidemiology Network, et al. A novel locus of resistance to severe malaria in a region of ancient balancing selection. Nature. 2015;526:253–7.

    Article  PubMed Central  CAS  Google Scholar 

  • Manjurano A, et al. Candidate human genetic polymorphisms and severe malaria in a Tanzanian population. PLoS One. 2012;7:e47463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manning L, et al. A Toll-like receptor-1 variant and its characteristic cellular phenotype is associated with severe malaria in Papua New Guinean children. Genes Immun. 2016;17:52–9.

    Article  CAS  PubMed  Google Scholar 

  • Marquet S, et al. A functional promoter variant in IL12B predisposes to cerebral malaria. Hum Mol Genet. 2008;17:2190–5.

    Article  CAS  PubMed  Google Scholar 

  • Marquet S, et al. The IL17F and IL17RA genetic variants increase risk of cerebral malaria in two African populations. Infect Immun. 2015;84:590–7.

    Article  PubMed  CAS  Google Scholar 

  • Marquet S, et al. A functional IL22 polymorphism (rs2227473) is associated with predisposition to childhood cerebral malaria. Sci Rep. 2017;7:41636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • May J, et al. HLA class II factors associated with Plasmodium falciparum merozoite surface antigen allele families. J Infect Dis. 1999;179:1042–5.

    Article  CAS  PubMed  Google Scholar 

  • May J, et al. HLA-DQB1*0501-restricted Th1 type immune responses to Plasmodium falciparum liver stage antigen 1 protect against malaria anemia and reinfections. J Infect Dis. 2001;183:168–72.

    Article  CAS  PubMed  Google Scholar 

  • May J, et al. Hemoglobin variants and disease manifestations in severe falciparum malaria. JAMA. 2007;297:2220–6.

    Article  CAS  PubMed  Google Scholar 

  • Mayer DC, et al. Glycophorin B is the erythrocyte receptor of Plasmodium falciparum erythrocyte-binding ligand, EBL-1. Proc Natl Acad Sci USA. 2009;106:5348–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGuire W, et al. Variation in the TNF-alpha promoter region associated with susceptibility to cerebral malaria. Nature. 1994;371:508–10.

    Article  CAS  PubMed  Google Scholar 

  • McGuire W, et al. Severe malarial anemia and cerebral malaria are associated with different tumor necrosis factor promoter alleles. J Infect Dis. 1999;179:287–90.

    Article  CAS  PubMed  Google Scholar 

  • Medzhitov R, Janeway Jr C. Innate immunity. N Engl J Med. 2000;343:338–44.

    Article  CAS  PubMed  Google Scholar 

  • Merry AH, et al. The use of monoclonal antibodies to quantify the levels of sialoglycoproteins alpha and delta and variant sialoglycoproteins in human erythrocyte membranes. Biochem J. 1986;233:93–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer CG, et al. TNFalpha-308A associated with shorter intervals of Plasmodium falciparum reinfections. Tissue Antigens. 2002;59:287–92.

    Article  CAS  PubMed  Google Scholar 

  • Meyer CG, et al. IL3 variant on chromosomal region 5q31–33 and protection from recurrent malaria attacks. Hum Mol Genet. 2011;20:1173–81.

    Article  CAS  PubMed  Google Scholar 

  • Mgone CS, et al. Occurrence of the erythrocyte band 3 (AE1) gene deletion in relation to malaria endemicity in Papua New Guinea. Trans R Soc Trop Med Hyg. 1996;90:228–31.

    Article  CAS  PubMed  Google Scholar 

  • Miller LH, et al. Erythrocyte receptors for (Plasmodium knowlesi) malaria: Duffy blood group determinants. Science. 1975;189:561–3.

    Article  CAS  PubMed  Google Scholar 

  • Miller LH, et al. The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. N Engl J Med. 1976;295:302–4.

    Article  CAS  PubMed  Google Scholar 

  • Miller LH, et al. Evidence for differences in erythrocyte surface receptors for the malarial parasites, Plasmodium falciparum and Plasmodium knowlesi. J Exp Med. 1977;146:277–81.

    Article  CAS  PubMed  Google Scholar 

  • Min-Oo G, et al. Pyruvate kinase deficiency in mice protects against malaria. Nat Genet. 2003;35:357–62.

    Article  CAS  PubMed  Google Scholar 

  • Mirchev R, et al. Membrane compartmentalization in Southeast Asian ovalocytosis red blood cells. Br J Haematol. 2011;155:111–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mockenhaupt FP, et al. Alpha(+)-thalassemia protects African children from severe malaria. Blood. 2004;104:2003–6.

    Article  CAS  PubMed  Google Scholar 

  • Mockenhaupt FP, et al. Toll-like receptor (TLR) polymorphisms in African children: common TLR-4 variants predispose to severe malaria. Proc Natl Acad Sci USA. 2006a;103:177–82.

    Article  CAS  PubMed  Google Scholar 

  • Mockenhaupt FP, et al. Common polymorphisms of toll-like receptors 4 and 9 are associated with the clinical manifestation of malaria during pregnancy. J Infect Dis. 2006b;194:184–8.

    Article  CAS  PubMed  Google Scholar 

  • Modell B, Darlison M. Global epidemiology of haemoglobin disorders and derived service indicators. Bull World Health Organ. 2008;86:480–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Modiano G, et al. Protection against malaria morbidity: near-fixation of the alpha-thalassemia gene in a Nepalese population. Am J Hum Genet. 1991;48:390–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Modiano D, et al. Haemoglobin C protects against clinical Plasmodium falciparum malaria. Nature. 2001;414:305–8.

    Article  CAS  PubMed  Google Scholar 

  • Mombo LE, et al. Human genetic polymorphisms and asymptomatic Plasmodium falciparum malaria in Gabonese schoolchildren. Am J Trop Med Hyg. 2003;68:186–90.

    Article  CAS  PubMed  Google Scholar 

  • Morahan G, et al. A promoter polymorphism in the gene encoding interleukin-12 p40 (IL12B) is associated with mortality from cerebral malaria and with reduced nitric oxide production. Genes Immun. 2002;3:414–8.

    Article  CAS  PubMed  Google Scholar 

  • Mordmuller BG, et al. Tumor necrosis factor in Plasmodium falciparum malaria: high plasma level is associated with fever, but high production capacity is associated with rapid fever clearance. Eur Cytokine Netw. 1997;8:29–35.

    CAS  PubMed  Google Scholar 

  • Moulds JM, et al. Identification of complement receptor one (CR1) polymorphisms in west Africa. Genes Immun. 2000;1:325–9.

    Article  CAS  PubMed  Google Scholar 

  • Naka I, et al. IFNGR1 polymorphisms in Thai malaria patients. Infect Genet Evol. 2009a;9:1406–9.

    Article  CAS  PubMed  Google Scholar 

  • Naka I, et al. Identification of a haplotype block in the 5q31 cytokine gene cluster associated with the susceptibility to severe malaria. Malar J. 2009b;8:232.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nathan C. Inducible nitric oxide synthase: what difference does it make? J Clin Invest. 1997;100:2417–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newsome F. Increased phagocytosis of non-parasitized red cells in Plasmodium berghei malaria. Ann Trop Med Parasitol. 1984;78:323–5.

    Article  CAS  PubMed  Google Scholar 

  • Nguetse CN, et al. FOXO3A regulatory polymorphism and susceptibility to severe malaria in Gabonese children. Immunogenetics. 2015;67:67–71.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TN, et al. Association of a functional TNF variant with Plasmodium falciparum parasitaemia in a congolese population. Genes Immun. 2017;18:152–7.

    Article  CAS  PubMed  Google Scholar 

  • Noguchi E, et al. An association study of asthma and total serum immunoglobin E levels for Toll-like receptor polymorphisms in a Japanese population. Clin Exp Allergy. 2004;34:177–83.

    Article  CAS  PubMed  Google Scholar 

  • Ohashi J, et al. Significant association of longer forms of CCTTT Microsatellite repeat in the inducible nitric oxide synthase promoter with severe malaria in Thailand. J Infect Dis. 2002;186:578–81.

    Article  CAS  PubMed  Google Scholar 

  • Ohashi J, et al. A single-nucleotide substitution from C to T at position −1055 in the IL-13 promoter is associated with protection from severe malaria in Thailand. Genes Immun. 2003;4:528–31.

    Article  CAS  PubMed  Google Scholar 

  • Ojurongbe O, et al. Genetic variants of tumor necrosis factor-alpha -308G/A (rs1800629) but not Toll-interacting proteins or vitamin D receptor genes enhances susceptibility and severity of malaria infection. Immunogenetics. 2017;70:135–140.

    Article  PubMed  CAS  Google Scholar 

  • Okeyo WA, et al. Interleukin (IL)-13 promoter polymorphisms (−7402 T/G and −4729G/A) condition susceptibility to pediatric severe malarial anemia but not circulating IL-13 levels. BMC Immunol. 2013;14:15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olaniyan SA, et al. Tumour necrosis factor alpha promoter polymorphism, TNF-238 is associated with severe clinical outcome of falciparum malaria in Ibadan southwest Nigeria. Acta Trop. 2016;161:62–7.

    Article  CAS  PubMed  Google Scholar 

  • Olson JA, Nagel RL. Synchronized cultures of P falciparum in abnormal red cells: the mechanism of the inhibition of growth in HbCC cells. Blood. 1986;67:997–1001.

    CAS  PubMed  Google Scholar 

  • Omar AH, et al. Toll-like receptor 9 (TLR9) polymorphism associated with symptomatic malaria: a cohort study. Malar J. 2012;11:168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ong’echa JM, et al. Polymorphic variability in the 3′ untranslated region (UTR) of IL12B is associated with susceptibility to severe anaemia in Kenyan children with acute Plasmodium falciparum malaria. BMC Genet. 2011;12:69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Osafo-Addo AD, et al. HLA-DRB1*04 allele is associated with severe malaria in northern Ghana. Am J Trop Med Hyg. 2008;78:251–5.

    Article  PubMed  Google Scholar 

  • Othoro C, et al. A low interleukin-10 tumor necrosis factor-alpha ratio is associated with malaria anemia in children residing in a holoendemic malaria region in western Kenya. J Infect Dis. 1999;179:279–82.

    Article  CAS  PubMed  Google Scholar 

  • Ouma C, et al. Haplotypes of IL-10 promoter variants are associated with susceptibility to severe malarial anemia and functional changes in IL-10 production. Hum Genet. 2008a;124:515–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouma C, et al. Polymorphic variability in the interleukin (IL)-1beta promoter conditions susceptibility to severe malarial anemia and functional changes in IL-1beta production. J Infect Dis. 2008b;198:1219–26.

    Article  CAS  PubMed  Google Scholar 

  • Pandey KC, et al. Bacterially expressed and refolded receptor binding domain of Plasmodium falciparum EBA-175 elicits invasion inhibitory antibodies. Mol Biochem Parasitol. 2002;123:23–33.

    Article  CAS  PubMed  Google Scholar 

  • Panigrahi S, et al. Genetic predisposition of variants in TLR2 and its co-receptors to severe malaria in Odisha, India. Immunol Res. 2016;64:291–302.

    Article  CAS  PubMed  Google Scholar 

  • Parroche P, et al. Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proc Natl Acad Sci USA. 2007;104:1919–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasvol G, et al. Cellular mechanism for the protective effect of haemoglobin S against P. falciparum malaria. Nature. 1978;274:701–3.

    Article  CAS  PubMed  Google Scholar 

  • Pasvol G, et al. Glycophorin as a possible receptor for Plasmodium falciparum. Lancet. 1982;2:947–50.

    Article  CAS  PubMed  Google Scholar 

  • Pasvol G, et al. Glycophorin C and the invasion of red cells by Plasmodium falciparum. Lancet. 1984;1:907–8.

    Article  CAS  PubMed  Google Scholar 

  • Patel SS, et al. The association of the glycophorin C exon 3 deletion with ovalocytosis and malaria susceptibility in the Wosera, Papua New Guinea. Blood. 2001;98:3489–91.

    Article  CAS  PubMed  Google Scholar 

  • Pathirana SL, et al. ABO-blood-group types and protection against severe, Plasmodium falciparum malaria. Ann Trop Med Parasitol. 2005;99:119–24.

    Article  CAS  PubMed  Google Scholar 

  • Pattanapanyasat K, et al. Impairment of Plasmodium falciparum growth in thalassemic red blood cells: further evidence by using biotin labeling and flow cytometry. Blood. 1999;93:3116–9.

    CAS  PubMed  Google Scholar 

  • Pereira VA, et al. IL10A genotypic association with decreased IL-10 circulating levels in malaria infected individuals from endemic area of the Brazilian Amazon. Malar J. 2015;14:30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peterson DS, Wellems TE. EBL-1, a putative erythrocyte binding protein of Plasmodium falciparum, maps within a favored linkage group in two genetic crosses. Mol Biochem Parasitol. 2000;105:105–13.

    Article  CAS  PubMed  Google Scholar 

  • Phawong C, et al. Haplotypes of IL12B promoter polymorphisms condition susceptibility to severe malaria and functional changes in cytokine levels in Thai adults. Immunogenetics. 2010;62:345–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pichyangkul S, et al. Malaria blood stage parasites activate human plasmacytoid dendritic cells and murine dendritic cells through a Toll-like receptor 9-dependent pathway. J Immunol. 2004;172:4926–33.

    Article  CAS  PubMed  Google Scholar 

  • Pravica V, et al. In vitro production of IFN-gamma correlates with CA repeat polymorphism in the human IFN-gamma gene. Eur J Immunogenet. 1999;26:1–3.

    Article  CAS  PubMed  Google Scholar 

  • Randall LM, et al. A study of the TNF/LTA/LTB locus and susceptibility to severe malaria in highland papuan children and adults. Malar J. 2010;9:302.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rihet P, et al. Malaria in humans: Plasmodium falciparum blood infection levels are linked to chromosome 5q31–q33. Am J Hum Genet. 1998;63:498–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogge L, et al. Selective expression of an interleukin-12 receptor component by human T helper 1 cells. J Exp Med. 1997;185:825–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosanas-Urgell A, et al. Reduced risk of Plasmodium vivax malaria in Papua New Guinean children with Southeast Asian ovalocytosis in two cohorts and a case-control study. PLoS Med. 2012;9:e1001305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowe A, et al. Plasmodium falciparum rosetting is associated with malaria severity in Kenya. Infect Immun. 1995;63:2323–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rowe JA, et al. P. falciparum rosetting mediated by a parasite-variant erythrocyte membrane protein and complement-receptor 1. Nature. 1997;388:292–5.

    Article  CAS  PubMed  Google Scholar 

  • Rowe JA, et al. Blood group O protects against severe Plasmodium falciparum malaria through the mechanism of reduced rosetting. Proc Natl Acad Sci USA. 2007;104:17471–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowe JA, et al. Blood groups and malaria: fresh insights into pathogenesis and identification of targets for intervention. Curr Opin Hematol. 2009;16:480–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruwende C, et al. Natural selection of hemi- and heterozygotes for G6PD deficiency in Africa by resistance to severe malaria. Nature. 1995;376:246–9.

    Article  CAS  PubMed  Google Scholar 

  • Sakuntabhai A, et al. Genetic determination and linkage mapping of Plasmodium falciparum malaria related traits in Senegal. PLoS One. 2008;3:e2000.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanchez-Mazas A, et al. The HLA-B landscape of Africa: signatures of pathogen-driven selection and molecular identification of candidate alleles to malaria protection. Mol Ecol. 2017;26(22):6238–52.

    Article  CAS  PubMed  Google Scholar 

  • Sawian CE, et al. Polymorphisms and expression of TLR4 and 9 in malaria in two ethnic groups of Assam, northeast India. Innate Immun. 2013;19:174–83.

    Article  PubMed  CAS  Google Scholar 

  • Schroder NW, Schumann RR. Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious disease. Lancet Infect Dis. 2005;5:156–64.

    Article  PubMed  Google Scholar 

  • Serirom S, et al. Anti-adhesive effect of nitric oxide on Plasmodium falciparum cytoadherence under flow. Am J Pathol. 2003;162:1651–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serjeantson SW. A selective advantage for the Gerbich-negative phenotype in malarious areas of Papua New Guinea. P N G Med J. 1989;32:5–9.

    CAS  PubMed  Google Scholar 

  • Shear HL, et al. Transgenic mice expressing human fetal globin are protected from malaria by a novel mechanism. Blood. 1998;92:2520–6.

    CAS  PubMed  Google Scholar 

  • Sieburth D, et al. Assignment of genes encoding a unique cytokine (IL12) composed of two unrelated subunits to chromosomes 3 and 5. Genomics. 1992;14:59–62.

    Article  CAS  PubMed  Google Scholar 

  • Sinha S, et al. Polymorphisms of TNF-enhancer and gene for FcgammaRIIa correlate with the severity of falciparum malaria in the ethnically diverse Indian population. Malar J. 2008;7:13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spadafora C, et al. Complement receptor 1 is a sialic acid-independent erythrocyte receptor of Plasmodium falciparum. PLoS Pathog. 2010;6:e1000968.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stevenson MM, Riley EM. Innate immunity to malaria. Nat Rev Immunol. 2004;4:169–80.

    Article  CAS  PubMed  Google Scholar 

  • Stevenson MM, et al. Modulation of host responses to blood-stage malaria by interleukin-12: from therapy to adjuvant activity. Microbes Infect. 2001;3:49–59.

    Article  CAS  PubMed  Google Scholar 

  • Szabo SJ, et al. Regulation of the interleukin (IL)-12R beta 2 subunit expression in developing T helper 1 (Th1) and Th2 cells. J Exp Med. 1997;185:817–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor BS, et al. Multiple NF-kappaB enhancer elements regulate cytokine induction of the human inducible nitric oxide synthase gene. J Biol Chem. 1998;273: 15148–56.

    Article  CAS  PubMed  Google Scholar 

  • Taylor SM, et al. Haemoglobinopathies and the clinical epidemiology of malaria: a systematic review and meta-analysis. Lancet Infect Dis. 2012;12:457–68.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tham WH, et al. Complement receptor 1 is the host erythrocyte receptor for Plasmodium falciparum PfRh4 invasion ligand. Proc Natl Acad Sci USA. 2010;107:17327–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JK, et al. A novel ligand from Plasmodium falciparum that binds to a sialic acid-containing receptor on the surface of human erythrocytes. Mol Microbiol. 2001;41:47–58.

    Article  CAS  PubMed  Google Scholar 

  • Timmann C, et al. Genome-wide association study indicates two novel resistance loci for severe malaria. Nature. 2012;489:443–6.

    Article  CAS  PubMed  Google Scholar 

  • Tishkoff SA, et al. Haplotype diversity and linkage disequilibrium at human G6PD: recent origin of alleles that confer malarial resistance. Science. 2001;293: 455–62.

    Article  CAS  PubMed  Google Scholar 

  • Tolia NH, et al. Structural basis for the EBA-175 erythrocyte invasion pathway of the malaria parasite Plasmodium falciparum. Cell. 2005;122:183–93.

    Article  CAS  PubMed  Google Scholar 

  • Torre D, et al. Role of Th1 and Th2 cytokines in immune response to uncomplicated Plasmodium falciparum malaria. Clin Diagn Lab Immunol. 2002;9:348–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tournamille C, et al. Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. Nat Genet. 1995;10:224–8.

    Article  CAS  PubMed  Google Scholar 

  • Trinchieri G. Interleukin-12: a cytokine at the interface of inflammation and immunity. Adv Immunol. 1998;70:83–243.

    Article  CAS  PubMed  Google Scholar 

  • Trovoada Mde J, et al. NOS2 variants reveal a dual genetic control of nitric oxide levels, susceptibility to Plasmodium infection, and cerebral malaria. Infect Immun. 2014;82:1287–95.

    Article  PubMed  CAS  Google Scholar 

  • Ubalee R, et al. Strong association of a tumor necrosis factor-alpha promoter allele with cerebral malaria in Myanmar. Tissue Antigens. 2001;58:407–10.

    Article  CAS  PubMed  Google Scholar 

  • Udomsangpetch R, et al. The effects of hemoglobin genotype and ABO blood group on the formation of rosettes by Plasmodium falciparum-infected red blood cells. Am J Trop Med Hyg. 1993;48:149–53.

    Article  CAS  PubMed  Google Scholar 

  • Uneke CJ. Plasmodium falciparum malaria and ABO blood group: is there any relationship? Parasitol Res. 2007;100:759–65.

    Article  CAS  PubMed  Google Scholar 

  • Uyoga S, et al. Glucose-6-phosphate dehydrogenase deficiency and the risk of malaria and other diseases in children in Kenya: a case-control and a cohort study. Lancet Haematol. 2015;2:e437–44.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vafa M, et al. Associations between the IL-4 −590 T allele and Plasmodium falciparum infection prevalence in asymptomatic Fulani of Mali. Microbes Infect. 2007;9:1043–8.

    Article  CAS  PubMed  Google Scholar 

  • Walley AJ, et al. Interleukin-1 gene cluster polymorphisms and susceptibility to clinical malaria in a Gambian case-control study. Eur J Hum Genet. 2004;12:132–8.

    Article  CAS  PubMed  Google Scholar 

  • Wattavidanage J, et al. TNFalpha*2 marks high risk of severe disease during Plasmodium falciparum malaria and other infections in Sri Lankans. Clin Exp Immunol. 1999;115:350–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weatherall DJ, et al. Malaria and the red cell. Hematology Am Soc Hematol Educ Program. 2002;2002:35–57.

    Article  Google Scholar 

  • Williams TN, et al. The membrane characteristics of Plasmodium falciparum-infected and -uninfected heterozygous alpha(0)thalassaemic erythrocytes. Br J Haematol. 2002;118:663–70.

    Article  PubMed  Google Scholar 

  • Wilson JN, et al. Analysis of IL10 haplotypic associations with severe malaria. Genes Immun. 2005;6:462–6.

    Article  CAS  PubMed  Google Scholar 

  • Wynn TA. IL-13 effector functions. Annu Rev Immunol. 2003;21:425–56.

    Article  CAS  PubMed  Google Scholar 

  • Xiang L, et al. Quantitative alleles of CR1: coding sequence analysis and comparison of haplotypes in two ethnic groups. J Immunol. 1999;163:4939–45.

    CAS  PubMed  Google Scholar 

  • Yamazaki A, et al. Human leukocyte antigen class I polymorphisms influence the mild clinical manifestation of Plasmodium falciparum infection in Ghanaian children. Hum Immunol. 2011;72:881–8.

    Article  CAS  PubMed  Google Scholar 

  • Yim JJ, et al. The association between microsatellite polymorphisms in intron II of the human Toll-like receptor 2 gene and tuberculosis among Koreans. Genes Immun. 2006;7:150–5.

    Article  CAS  PubMed  Google Scholar 

  • Zanella A, Bianchi P. Red cell pyruvate kinase deficiency: from genetics to clinical manifestations. Baillieres Best Pract Res Clin Haematol. 2000;13:57–81.

    Article  CAS  PubMed  Google Scholar 

  • Zanella A, et al. Molecular characterization of PK-LR gene in pyruvate kinase-deficient Italian patients. Blood. 1997;89:3847–52.

    CAS  PubMed  Google Scholar 

  • Zhang D, Pan W. Evaluation of three Pichia pastoris-expressed Plasmodium falciparum merozoite proteins as a combination vaccine against infection with blood-stage parasites. Infect Immun. 2005;73:6530–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, et al. Polymorphisms in genes of interleukin 12 and its receptors and their association with protection against severe malarial anaemia in children in western Kenya. Malar J. 2010;9:87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth S. Egan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nguetse, C.N., Egan, E.S. (2019). Host Genetic Predisposition to Malaria. In: Kremsner, P., Krishna, S. (eds) Encyclopedia of Malaria. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8757-9_139-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8757-9_139-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8757-9

  • Online ISBN: 978-1-4614-8757-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics