Skip to main content

The Plasmodium Tricarboxylic Acid Cycle and Mitochondrial Metabolism

  • Living reference work entry
  • First Online:
Encyclopedia of Malaria

Synonyms

Central carbon metabolism; Citric acid cycle; Krebs cycle

Definition

The mitochondrion of the malaria parasite harbors a number of metabolic pathways, including a fully functional tricarboxylic acid cycle, which constitutes a central hub of carbon metabolism. Enzymes required for the synthesis of several cofactors are also located within this organelle. Here the role of the TCA cycle and other biosynthetic pathways in intraerythrocytic asexual and gametocyte stages of Plasmodium spp. is summarized.

Introduction

All members of the genus Plasmodium, including P. falciparumthe major cause of malaria, possess a single mitochondrion that harbors enzymes required for oxidative phosphorylation, the tricarboxylic acid (TCA) cycle, and a number of other metabolic pathways. Until recently the extent to which some of these pathways were operable in the major developmental stages (sporozoite, asexual red blood cell (RBC), gametocyte, and mosquito vector (oocyst)) and their precise role...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allary M, Lu JZ, Zhu L, Prigge ST. Scavenging of the cofactor lipoate is essential for the survival of the malaria parasite Plasmodium falciparum. Mol Microbiol. 2007;63:1331–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Atamna H, Pascarmona G, Ginsburg H. Hexose-monophosphate shunt activity in intact Plasmodium falciparum-infected erythrocytes and in free parasites. Mol Biochem Parasitol. 1994;67:79–89.

    Article  CAS  PubMed  Google Scholar 

  • Balabaskaran Nina P, Dudkina NV, Kane LA, van Eyk JE, Boekema EJ, Mather MW, Vaidya AB. Highly divergent mitochondrial ATP synthase complexes in Tetrahymena thermophila. PLoS Biol. 2010;8:e1000418.

    Article  PubMed Central  PubMed  Google Scholar 

  • Balabaskaran Nina P, Morrisey JM, Ganesan SM, Ke H, Pershing AM, Mather MW, Vaidya AB. ATP synthase complex of Plasmodium falciparum: dimeric assembly in mitochondrial membranes and resistance to genetic disruption. J Biol Chem. 2011;286:41312–22.

    Article  PubMed  Google Scholar 

  • Botte CY, Yamaryo-Botte Y, Rupasinghe TW, Mullin KA, MacRae JI, Spurck TP, Kalanon M, Shears MJ, Coppel RL, Crellin PK, Marechal E, McConville MJ, McFadden GI. Atypical lipid composition in the purified relict plastid (apicoplast) of malaria parasites. Proc Natl Acad Sci U S A. 2013;110:7506–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bowman IB, Grant PT, Kermack WO, Ogston D. The metabolism of Plasmodium berghei, the malaria parasite of rodents. 2. An effect of mepacrine on the metabolism of glucose by the parasite separated from its host cell. Biochem J. 1961;78:472–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bozdech Z, Llinas M, Pulliam BL, Wong ED, Zhu J, DeRisi JL. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol. 2003;1:E5.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bryant C, Voller A, Smith MJ. The incorporation of radioactivity from (14c)glucose into the soluble metabolic intermediates of malaria parasites. Am J Trop Med Hyg. 1964;13:515–9.

    CAS  PubMed  Google Scholar 

  • Buckwitz D, Jacobasch G, Gerth C. Phosphofructokinase from Plasmodium berghei. Influence of Mg2+, ATP and Mg2(+)-complexed ATP. Biochem J. 1990a;267:353–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buckwitz D, Jacobasch G, Gerth C. Phosphofructokinase from Plasmodium berghei: a kinetic model of allosteric regulation. Mol Biochem Parasitol. 1990b;40:225–32.

    Article  CAS  PubMed  Google Scholar 

  • Bulusu V, Jayaraman V, Balaram H. Metabolic fate of fumarate, a side product of the purine salvage pathway in the intraerythrocytic stages of Plasmodium falciparum. J Biol Chem. 2011;286:9236–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chan XW, Wrenger C, Stahl K, Bergmann B, Winterberg M, Muller IB, Saliba KJ. Chemical and genetic validation of thiamine utilization as an antimalarial drug target. Nat Commun. 2013;4:2060.

    Article  PubMed  Google Scholar 

  • Cobbold SA, Vaughan AM, Lewis IA, Painter HJ, Camargo N, Perlman DH, Fishbaugher M, Healer J, Cowman AF, Kappe SH, Llinas M. Kinetic flux profiling elucidates two independent acetyl-CoA biosynthetic pathways in Plasmodium falciparum. J Biol Chem. 2013;288:36338–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Daily JP, Scanfeld D, Pochet N, Le Roch K, Plouffe D, Kamal M, Sarr O, Mboup S, Ndir O, Wypij D, Levasseur K, Thomas E, Tamayo P, Dong C, Zhou Y, Lander ES, Ndiaye D, Wirth D, Winzeler EA, Mesirov JP, Regev A. Distinct physiological states of Plasmodium falciparum in malaria-infected patients. Nature. 2007;450:1091–5.

    Article  CAS  PubMed  Google Scholar 

  • de Macedo CS, Uhrig ML, Kimura EA, Katzin AM. Characterization of the isoprenoid chain of coenzyme Q in Plasmodium falciparum. FEMS Microbiol Lett. 2002;207:13–20.

    Article  PubMed  Google Scholar 

  • Divo AA, Geary TG, Jensen JB, Ginsburg H. The mitochondrion of Plasmodium falciparum visualized by rhodamine 123 fluorescence. J Protozool. 1985;32:442–6.

    Article  CAS  PubMed  Google Scholar 

  • Florens L, Washburn MP, Raine JD, Anthony RM, Grainger M, Haynes JD, Moch JK, Muster N, Sacci JB, Tabb DL, Witney AA, Wolters D, Wu Y, Gardner MJ, Holder AA, Sinden RE, Yates JR, Carucci DJ. A proteomic view of the Plasmodium falciparum life cycle. Nature. 2002;419:520–6.

    Article  CAS  PubMed  Google Scholar 

  • Foth BJ, Stimmler LM, Handman E, Crabb BS, Hodder AN, McFadden GI. The malaria parasite Plasmodium falciparum has only one pyruvate dehydrogenase complex, which is located in the apicoplast. Mol Microbiol. 2005;55:39–53.

    Article  CAS  PubMed  Google Scholar 

  • Fry M, Beesley JE. Mitochondria of mammalian Plasmodium spp. Parasitology. 1991;102(Pt 1):17–26.

    Article  PubMed  Google Scholar 

  • Fry M, Webb E, Pudney M. Effect of mitochondrial inhibitors on adenosinetriphosphate levels in Plasmodium falciparum. Comp Biochem Physiol B. 1990;96:775–82.

    CAS  PubMed  Google Scholar 

  • Gisselberg JE, Dellibovi-Ragheb TA, Matthews KA, Bosch G, Prigge ST. The suf iron-sulfur cluster synthesis pathway is required for apicoplast maintenance in malaria parasites. PLoS Pathog. 2013;9:e1003655.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gunther S, Wallace L, Patzewitz EM, McMillan PJ, Storm J, Wrenger C, Bissett R, Smith TK, Muller S. Apicoplast lipoic acid protein ligase B is not essential for Plasmodium falciparum. PLoS Pathog. 2007;3:e189.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gunther S, Matuschewski K, Muller S. Knockout studies reveal an important role of Plasmodium lipoic acid protein ligase A1 for asexual blood stage parasite survival. PLoS One. 2009;4:e5510.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hino A, Hirai M, Tanaka TQ, Watanabe Y, Matsuoka H, Kita K. Critical roles of the mitochondrial complex II in oocyst formation of rodent malaria parasite Plasmodium berghei. J Biochem. 2012;152:259–68.

    Article  CAS  PubMed  Google Scholar 

  • Hodges M, Yikilmaz E, Patterson G, Kasvosve I, Rouault TA, Gordeuk VR, Loyevsky M. An iron regulatory-like protein expressed in Plasmodium falciparum displays aconitase activity. Mol Biochem Parasitol. 2005;143:29–38.

    Article  CAS  PubMed  Google Scholar 

  • Kehr S, Sturm N, Rahlfs S, Przyborski JM, Becker K. Compartmentation of redox metabolism in malaria parasites. PLoS Pathog. 2010;6:e1001242.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krungkrai J, Burat D, Kudan S, Krungkrai S, Prapunwattana P. Mitochondrial oxygen consumption in asexual and sexual blood stages of the human malarial parasite, Plasmodium falciparum. Southeast Asian J Trop Med Public Health. 1999;30:636–42.

    CAS  PubMed  Google Scholar 

  • Lang-Unnasch N. Purification and properties of Plasmodium falciparum malate dehydrogenase. Mol Biochem Parasitol. 1992;50:17–25.

    Article  CAS  PubMed  Google Scholar 

  • Le Roch KG, Zhou Y, Blair PL, Grainger M, Moch JK, Haynes JD, De La Vega P, Holder AA, Batalov S, Carucci DJ, Winzeler EA. Discovery of gene function by expression profiling of the malaria parasite life cycle. Science. 2003;301:1503–8.

    Article  PubMed  Google Scholar 

  • LeRoux M, Lakshmanan V, Daily JP. Plasmodium falciparum biology: analysis of in vitro versus in vivo growth conditions. Trends Parasitol. 2009;25:474–81.

    Article  PubMed  Google Scholar 

  • Lovegrove FE, Pena-Castillo L, Liles WC, Hughes TR, Kain KC. Plasmodium falciparum shows transcriptional versatility within the human host. Trends Parasitol. 2008;24:288–91.

    Article  CAS  PubMed  Google Scholar 

  • MacRae JI, Sheiner L, Nahid A, Tonkin C, Striepen B, McConville MJ. Mitochondrial metabolism of glucose and glutamine is required for intracellular growth of Toxoplasma gondii. Cell Host Microbe. 2012;12:682–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • MacRae JI, Dixon MW, Dearnley MK, Chua HH, Chambers JM, Kenny S, Bottova I, Tilley L, McConville MJ. Mitochondrial metabolism of sexual and asexual blood stages of the malaria parasite Plasmodium falciparum. BMC Biol. 2013;11:67.

    Article  PubMed Central  PubMed  Google Scholar 

  • Muller IB, Hyde JE. Folate metabolism in human malaria parasites – 75 years on. Mol Biochem Parasitol. 2013;188:63–77.

    Article  CAS  PubMed  Google Scholar 

  • Nagaraj VA, Sundaram B, Varadarajan NM, Subramani PA, Kalappa DM, Ghosh SK, Padmanaban G. Malaria parasite-synthesized heme is essential in the mosquito and liver stages and complements host heme in the blood stages of infection. PLoS Pathog. 2013;9:e1003522.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nozawa A, Fujimoto R, Matsuoka H, Tsuboi T, Tozawa Y. Cell-free synthesis, reconstitution, and characterization of a mitochondrial dicarboxylate-tricarboxylate carrier of Plasmodium falciparum. Biochem Biophys Res Commun. 2011;414:612–7.

    Article  CAS  PubMed  Google Scholar 

  • Okamoto N, Spurck TP, Goodman CD, McFadden GI. Apicoplast and mitochondrion in gametocytogenesis of Plasmodium falciparum. Eukaryot Cell. 2009;8:128–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Olszewski KL, Morrisey JM, Wilinski D, Burns JM, Vaidya AB, Rabinowitz JD, Llinas M. Host-parasite interactions revealed by Plasmodium falciparum metabolomics. Cell Host Microbe. 2009;5:191–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Olszewski KL, Mather MW, Morrisey JM, Garcia BA, Vaidya AB, Rabinowitz JD, Llinas M. Branched tricarboxylic acid metabolism in Plasmodium falciparum. Nature. 2010;466:774–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Olszewski KL, Mather MW, Morrisey JM, Garcia BA, Vaidya AB, Rabinowitz JD, Llinas M. Retraction: branched tricarboxylic acid metabolism in Plasmodium falciparum. Nature. 2013;497:652.

    Article  CAS  PubMed  Google Scholar 

  • Oppenheim RD, Creek DJ, MacRae JI, Modrzynska KK, Pino P, Limenitakis J, Polonais V, Seeber F, Barrett MP, Billker O, McConville MJ, Soldati-Favre D. BCKDH: the missing link in apicomplexan mitochondrial metabolism is required for full virulence of Toxoplasma gondii and Plasmodium berghei. PLoS Pathogens. 2014;10:e1004263.

    Google Scholar 

  • Painter HJ, Morrisey JM, Mather MW, Vaidya AB. Specific role of mitochondrial electron transport in blood-stage Plasmodium falciparum. Nature. 2007;446:88–91.

    Article  CAS  PubMed  Google Scholar 

  • Ralph SA. Strange organelles – Plasmodium mitochondria lack a pyruvate dehydrogenase complex. Mol Microbiol. 2005;55:1–4.

    Article  CAS  PubMed  Google Scholar 

  • Roth Jr E. Plasmodium falciparum carbohydrate metabolism: a connection between host cell and parasite. Blood Cells. 1990;16:453–60; discussion 461–456.

    CAS  PubMed  Google Scholar 

  • Rudzinska MA. The fine structure of malaria parasites. Int Rev Cytol. 1969;25:161–99.

    Article  CAS  PubMed  Google Scholar 

  • Scheibel LW, Pflaum WK. Cytochrome oxidase activity in platelet-free preparations of Plasmodium falciparum. J Parasitol. 1970;56:1054.

    Article  CAS  PubMed  Google Scholar 

  • Seeber F, Limenitakis J, Soldati-Favre D. Apicomplexan mitochondrial metabolism: a story of gains, losses and retentions. Trends Parasitol. 2008;24:468–78.

    Article  CAS  PubMed  Google Scholar 

  • Sheiner L, Vaidya AB, McFadden GI. The metabolic roles of the endosymbiotic organelles of Toxoplasma and Plasmodium spp. Curr Opin Microbiol. 2013;16:452–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sigala PA, Crowley JR, Hsieh S, Henderson JP, Goldberg DE. Direct tests of enzymatic heme degradation by the malaria parasite Plasmodium falciparum. J Biol Chem. 2012;287:37793–807.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Srivastava IK, Rottenberg H, Vaidya AB. Atovaquone, a broad spectrum antiparasitic drug, collapses mitochondrial membrane potential in a malarial parasite. J Biol Chem. 1997;272:3961–6.

    Article  CAS  PubMed  Google Scholar 

  • Storm J, Muller S. Lipoic acid metabolism of Plasmodium – a suitable drug target. Curr Pharm Des. 2012;18:3480–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Storm J, Perner J, Aparicio I, Patzewitz EM, Olszewski K, Llinas M, Engel PC, Muller S. Plasmodium falciparum glutamate dehydrogenase a is dispensable and not a drug target during erythrocytic development. Malar J. 2011;10:193.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Storm J, Sethia S, Blackburn GJ, Chokkathukalam A, Watson DG, Breitling R, Coombs GH, Muller S. Phosphoenolpyruvate carboxylase identified as a key enzyme in erythrocytic Plasmodium falciparum carbon metabolism. PLoS Pathog. 2014;10:e1003876.

    Article  PubMed Central  PubMed  Google Scholar 

  • Suraveratum N, Krungkrai SR, Leangaramgul P, Prapunwattana P, Krungkrai J. Purification and characterization of Plasmodium falciparum succinate dehydrogenase. Mol Biochem Parasitol. 2000;105:215–22.

    Article  CAS  PubMed  Google Scholar 

  • Takashima E, Takamiya S, Takeo S, Mi-ichi F, Amino H, Kita K. Isolation of mitochondria from Plasmodium falciparum showing dihydroorotate dependent respiration. Parasitol Int. 2001;50:273–8.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka TQ, Hirai M, Watanabe Y, Kita K. Toward understanding the role of mitochondrial complex II in the intraerythrocytic stages of Plasmodium falciparum: gene targeting of the Fp subunit. Parasitol Int. 2012;61:726–8.

    Article  CAS  PubMed  Google Scholar 

  • Teng R, Junankar PR, Bubb WA, Rae C, Mercier P, Kirk K. Metabolite profiling of the intraerythrocytic malaria parasite Plasmodium falciparum by (1)H NMR spectroscopy. NMR Biomed. 2009;22:292–302.

    Article  CAS  PubMed  Google Scholar 

  • Tonhosolo R, Gabriel HB, Matsumura MY, Cabral FJ, Yamamoto MM, D’Alexandri FL, Sussmann RA, Belmonte R, Peres VJ, Crick DC, Wunderlich G, Kimura EA, Katzin AM. Intraerythrocytic stages of Plasmodium falciparum biosynthesize menaquinone. FEBS Lett. 2010;584:4761–8.

    Article  CAS  PubMed  Google Scholar 

  • Tonkin CJ, van Dooren GG, Spurck TP, Struck NS, Good RT, Handman E, Cowman AF, McFadden GI. Localization of organellar proteins in Plasmodium falciparum using a novel set of transfection vectors and a new immunofluorescence fixation method. Mol Biochem Parasitol. 2004;137:13–21.

    Article  CAS  PubMed  Google Scholar 

  • Vaidya AB, Mather MW. Mitochondrial evolution and functions in malaria parasites. Annu Rev Microbiol. 2009;63:249–67.

    Article  CAS  PubMed  Google Scholar 

  • Vaughan AM, O’Neill MT, Tarun AS, Camargo N, Phuong TM, Aly AS, Cowman AF, Kappe SH. Type II fatty acid synthesis is essential only for malaria parasite late liver stage development. Cell Microbiol. 2009;11:506–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wrenger C, Muller S. Isocitrate dehydrogenase of Plasmodium falciparum. Eur J Biochem. 2003;270:1775–83.

    Article  CAS  PubMed  Google Scholar 

  • Wrenger C, Muller S. The human malaria parasite Plasmodium falciparum has distinct organelle-specific lipoylation pathways. Mol Microbiol. 2004;53:103–13.

    Article  CAS  PubMed  Google Scholar 

  • Wrenger C, Muller IB, Schifferdecker AJ, Jain R, Jordanova R, Groves MR. Specific inhibition of the aspartate aminotransferase of Plasmodium falciparum. J Mol Biol. 2011;405:956–71.

    Article  CAS  PubMed  Google Scholar 

  • Yeh E, DeRisi JL. Chemical rescue of malaria parasites lacking an apicoplast defines organelle function in blood-stage Plasmodium falciparum. PLoS Biol. 2011;9:e1001138.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Young JA, Fivelman QL, Blair PL, de la Vega P, Le Roch KG, Zhou Y, Carucci DJ, Baker DA, Winzeler EA. The Plasmodium falciparum sexual development transcriptome: a microarray analysis using ontology-based pattern identification. Mol Biochem Parasitol. 2005;143:67–79.

    Article  CAS  PubMed  Google Scholar 

  • Yu M, Kumar TR, Nkrumah LJ, Coppi A, Retzlaff S, Li CD, Kelly BJ, Moura PA, Lakshmanan V, Freundlich JS, Valderramos JC, Vilcheze C, Siedner M, Tsai JH, Falkard B, Sidhu AB, Purcell LA, Gratraud P, Kremer L, Waters AP, Schiehser G, Jacobus DP, Janse CJ, Ager A, Jacobs Jr WR, Sacchettini JC, Heussler V, Sinnis P, Fidock DA. The fatty acid biosynthesis enzyme FabI plays a key role in the development of liver-stage malarial parasites. Cell Host Microbe. 2008;4:567–78.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon A. Cobbold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Cobbold, S.A., McConville, M.J. (2014). The Plasmodium Tricarboxylic Acid Cycle and Mitochondrial Metabolism. In: Hommel, M., Kremsner, P. (eds) Encyclopedia of Malaria. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8757-9_13-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8757-9_13-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-8757-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics