Skip to main content

Avian Malaria Models of Disease

  • Living reference work entry
  • First Online:

Synonyms

Damage; Immunity; Infection; Parasitemia; Pathogenicity; Plasmodium gallinaceum ; Plasmodium relictum ; Resistance; Tolerance; Virulence

Definition

Avian malaria parasites are widespread disease agents infecting hundreds of bird species in the five continents. They exhibit a large taxonomic variation especially if based on genetic classification. Pathogenicity is also very variable and depends on the parasite species, the host species, and the environmental conditions where the interaction takes place. Factors that shape the severity of the infection include parasite and host genetics, host age, and immune reactivity. The combinations of parasite traits, host traits, and environmental traits therefore produce infection patterns that range from being highly lethal to the host or asymptomatic. Two avian Plasmodium species have been used as model systems both in laboratory and field studies: Plasmodium relictum and P. gallinaceum. P. gallinaceumis relevant because it infects...

This is a preview of subscription content, log in via an institution.

References

  • Asghar M, Westerdahl H, Zehtindjiev P, Ilieva M, Hasselquist D, Bensch S. Primary peak and chronic malaria infection levels are correlated in experimentally infected great reed warblers. Parasitology. 2012;139:1246–52.

    Article  PubMed  Google Scholar 

  • Atkinson CT, Woods KL, Dusek RJ, Sileo LS, Iko WM. Wildlife disease and conservation in Hawaii: pathogenicity of avian malaria (Plasmodium relictum) in experimentally infected Iiwi (Vestiaria coccinea). Parasitology. 1995;111:S59–69.

    Article  PubMed  Google Scholar 

  • Atkinson CT, Dusek RJ, Woods KL, Iko WM. Pathogenicity of avian malaria in experimentally-infected Hawaii Amakihi. J Wildl Dis. 2000;36:197–204.

    Article  CAS  PubMed  Google Scholar 

  • Beadell JS, Gering E, Austin J, Dumbacher JP, Peirce MA, Pratt TK, Atkinson CT, Fleischer RC. Prevalence and differential host-specificity of two avian blood parasite genera in the Australo-Papuan region. Mol Ecol. 2004;13:3829–44.

    Article  PubMed  Google Scholar 

  • Bell AS, De Roode JC, Sim D, Read AF. Within-host competition in genetically diverse malaria infections: parasite virulence and competitive success. Evolution. 2006;60:1358–71.

    Article  PubMed  Google Scholar 

  • Bensch S, Perez-Tris J, Waldenström J, Hellgren O. Linkage between nuclear and mitochondrial DNA sequences in avian malaria parasites: multiple cases of cryptic speciation? Evolution. 2004;58:1617–21.

    Article  CAS  PubMed  Google Scholar 

  • Bensch S, Hellgren O, Perez-Tris J. MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol Ecol Resour. 2009;9:1353–8.

    Article  PubMed  Google Scholar 

  • Bichet C, Cornet S, Larcombe S, Sorci G. Experimental inhibition of nitric oxide increases Plasmodium relictum (lineage SGS1) parasitemia. Exp Parasitol. 2012;132:417–23.

    Article  CAS  PubMed  Google Scholar 

  • Cellier-Holzem E, Esparza-Salas R, Garnier S, Sorci G. Effect of repeated exposure to Plasmodium relictum (lineage SGS1) on infection dynamics in domestic canaries. Int J Parasitol. 2010;40:1447–53.

    Article  PubMed  Google Scholar 

  • Cornet S, Bichet C, Larcombe S, Faivre B, Sorci G. Impact of host nutritional status on infection dynamics and virulence in a bird-malaria. J Anim Ecol. 2014a;83:256–65.

    Article  PubMed  Google Scholar 

  • Cornet S, Nicot A, Rivero A, Gandon S. Evolution of plastic transmission strategies in avian malaria. PLoS Pathog. 2014b;10:e1004308.

    Google Scholar 

  • de Matos MB, Quaresma JAS, Herculano AM, Crespo-López ME, DaMatta RA, do Nascimento JLM. Pathogenic action of Plasmodium gallinaceum in chickens: brain histology and nitric oxide production by blood monocyte-derived macrophages. Vet Parasitol. 2010;172:16–22.

    Article  Google Scholar 

  • de Matos MB, Miranda FJB, de Souza FS, de Carvalho ECQ, Albernaz AP, do Nascimento JLM, DaMatta RA. Chickens treated with a nitric oxide inhibitor became more resistant to Plasmodium gallinaceum infection due to reduced anemia, thrombocytopenia and inflammation. Vet Res. 2013;44:8.

    Article  Google Scholar 

  • Fallon SM, Bermingham E, Ricklefs RE. Island and taxon effects in parasitism revisited: avian malaria in the Lesser Antilles. Evolution. 2003;57:606–15.

    Article  PubMed  Google Scholar 

  • Fallon SM, Bermingham E, Ricklefs RE. Host specialization and geographic localization of avian malaria parasites: a regional analysis in the Lesser Antilles. Am Nat. 2005;165:466–80.

    Article  PubMed  Google Scholar 

  • Garnham PCC. Malaria parasites and other Haemosporidia. Oxford: Blackwell Scientific; 1966.

    Google Scholar 

  • Hayworth AM, Charles van Riper I, Weathers WW. Effects of Plasmodium relictum on the metabolic rate and body temperature in canaries (Serinus canarius). J Parasitol. 1987;73:850–3.

    Article  CAS  PubMed  Google Scholar 

  • Hellgren O, Waldenstrom J, Perez-Tris J, Szollosi E, Hasselquist D, Krizanauskiene A, Ottosson U, Bensch S. Detecting shifts of transmission areas in avian blood parasites – a phylogenetic approach. Mol Ecol. 2007;16:1281–90.

    Article  PubMed  Google Scholar 

  • Hunt NH, Grau GE. Cytokines: accelerators and brakes in the pathogenesis of cerebral malaria. Trends Immunol. 2003;24:491–9.

    Article  CAS  PubMed  Google Scholar 

  • Isaksson C, Sepil I, Baramidze V, Sheldon BC. Explaining variance of avian malaria infection in the wild: the importance of host density, habitat, individual life-history and oxidative stress. BMC Ecol. 2013;13:15.

    Article  PubMed Central  PubMed  Google Scholar 

  • Knowles SCL, Palinauskas V, Sheldon BC. Chronic malaria infections increase family inequalities and reduce parental fitness: experimental evidence from a wild bird population. J Evol Biol. 2010;23:557–69.

    Article  CAS  PubMed  Google Scholar 

  • LaPointe DA, Atkinson CT, Samuel MD. Ecology and conservation biology of avian malaria. Ann N Y Acad Sci. 2012;1249:211–26.

    Article  PubMed  Google Scholar 

  • Larcombe S, Bichet C, Cornet S, Faivre B, Sorci G. Food availability and competition do not modulate the costs of Plasmodium infection in dominant male canaries. Exp Parasitol. 2013;135:708–14.

    Article  PubMed  Google Scholar 

  • Lazzaro BP, Little TJ. Immunity in a variable world. Philos Trans R Soc B. 2009;364:15–26.

    Article  Google Scholar 

  • Loiseau C, Zoorob R, Garnier S, Birard J, Federici P, Julliard R, Sorci G. Antagonistic effects of a MHC class I allele on malaria-infected house sparrows. Ecol Lett. 2008;11:258–65.

    Article  PubMed  Google Scholar 

  • Loiseau C, Zoorob R, Robert A, Chastel O, Julliard R, Sorci G. Plasmodium relictum infection and MHC diversity in the house sparrow (Passer domesticus). Proc R Soc B Biol Sci. 2011;278:1264–72.

    Article  Google Scholar 

  • Long GH, Chan BHK, Allen JE, Read AF, Graham AL. Experimental manipulation of immune-mediated disease and its fitness costs for rodent malaria parasites. BMC Evol Biol. 2008;8:128.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mackinnon MJ, Read AF. Genetic relationships between parasite virulence and transmission in the rodent malaria Plasmodium chabaudi. Evolution. 1999;53:689–703.

    Article  Google Scholar 

  • Medeiros MCI, Hamer GL, Ricklefs RE. Host compatibility rather than vector-host-encounter rate determines the host range of avian Plasmodium parasites. Proc R Soc B Biol Sci. 2013;280:20122947.

    Article  Google Scholar 

  • Palinauskas V, Valkiūnas GN, Bolshakov CV, Bensch S. Plasmodium relictum (lineage P-SGS1): effects on experimentally infected passerine birds. Exp Parasitol. 2008;120:372–80.

    Article  PubMed  Google Scholar 

  • Palinauskas V, Valkiūnas G, Krizanauskiene A, Bensch S, Bolshakov CV. Plasmodium relictum (lineage P-SGS1): further observation of effects on experimentally infected passeriform birds, with remarks on treatment with Malarone (TM). Exp Parasitol. 2009;123:134–9.

    Article  CAS  PubMed  Google Scholar 

  • Palinauskas V, Valkiūnas G, Bolshakov CV, Bensch S. Plasmodium relictum (lineage SGS1) and Plasmodium ashfordi (lineage GRW2): the effects of the co-infection on experimentally infected passerine birds. Exp Parasitol. 2011;127:527–33.

    Article  PubMed  Google Scholar 

  • Palmer JL, McCutchan TF, Vargas FH, Deem SL, Cruz M, Hartman DA, Parker PG. Seroprevalence of malarial antibodies in Galapagos penguins (Spheniscus mendiculus). J Parasitol. 2013;99:770–6.

    Article  PubMed  Google Scholar 

  • Paulman A, McAllister MM. Plasmodium gallinaceum: clinical progression, recovery, and resistance to disease in chickens infected via mosquito bite. Am J Trop Med Hyg. 2005;73:1104–7.

    PubMed  Google Scholar 

  • Perez-Tris J, Hellgren O, Krizanauskiene A, Waldenstrom J, Secondi J, Bonneaud C, Fjeldsa J, Hasselquist D, Bensch S. Within-host speciation of malaria parasites. PLoS One. 2007;2.

    Google Scholar 

  • Permin A, Juhl J. The development of Plasmodium gallinaceum infections in chickens following single infections with three different dose levels. Vet Parasitol. 2002;105:1–10.

    Article  CAS  PubMed  Google Scholar 

  • Radwan J, Zagalska-Neubauer M, Cichon M, Sendecka J, Kulma K, Gustafsson L, Babik W. MHC diversity, malaria and lifetime reproductive success in collared flycatchers. Mol Ecol. 2012;21:2469–79.

    Article  PubMed  Google Scholar 

  • Reullier J, Perez-Tris J, Bensch S, Secondi J. Diversity, distribution and exchange of blood parasites meeting at an avian moving contact zone. Mol Ecol. 2006;15:753–63.

    Article  PubMed  Google Scholar 

  • Ricklefs RE, Fallon SM, Bermingham E. Evolutionary relationships, cospeciation, and host switching in avian malaria parasites. Syst Biol. 2004;53:111–9.

    Article  PubMed  Google Scholar 

  • Ricklefs RE, Swanson BL, Fallon SM, Martinez-Abrain A, Scheuerlein A, Gray J, Latta SC. Community relationships of avian malaria parasites in southern Missouri. Ecol Monogr. 2005;75:543–59.

    Article  Google Scholar 

  • Sepil I, Lachish S, Hinks AE, Sheldon BC. Mhc supertypes confer both qualitative and quantitative resistance to avian malaria infections in a wild bird population. Proc R Soc B Biol Sci. 2013;280:20130134.

    Article  Google Scholar 

  • Silveira P, DaMatta RA, Dagosto M. Hematological changes of chickens experimentally infected with Plasmodium (Bennettinia) juxtanucleare. Vet Parasitol. 2009;162:257–62.

    Article  PubMed  Google Scholar 

  • Valkiūnas G. Avian malaria parasites and other haemosporidia. Boca Raton: CRC Press; 2005.

    Google Scholar 

  • Van Riper III C, Van Riper SG, Goff ML, Laird M. The epizootiology and ecological significance of malaria in Hawaiian land birds. Ecol Monogr. 1986;56:327–44.

    Article  Google Scholar 

  • Vashist U, Falqueto AD, Lustrino D, Tunholi VM, Tunholi-Alves VM, dos Santos MAJ, D’Agosto M, Massard CL, Pinheiro J. Hepatic profile of Gallus gallus Linnaeus, 1758 experimentally infected by Plasmodium juxtanucleare Versiani & Gomes, 1941. Vet Parasitol. 2011;175:207–11.

    Article  PubMed  Google Scholar 

  • Waldenström J, Bensch S, Kiboi S, Hasselquist D, Ottosson U. Cross-species infection of blood parasites between resident and migratory songbirds in Africa. Mol Ecol. 2002;11:1545–54.

    Article  PubMed  Google Scholar 

  • Westerdahl H, Asghar M, Hasselquist D, Bensch S. Quantitative disease resistance: to better understand parasite-mediated selection on major histocompatibility complex. Proc R Soc B Biol Sci. 2012;279:577–84.

    Article  Google Scholar 

  • Williams RB. Avian malaria: clinical and chemical pathology of Plasmodium gallinaceum in the domesticated fowl Gallus gallus. Avian Pathol. 2005;34:29–47.

    Article  CAS  PubMed  Google Scholar 

  • Wolinska J, King KC. Environment can alter selection in host-parasite interactions. Trends Parasitol. 2009;25:236–44.

    Article  PubMed  Google Scholar 

  • Woodworth BL, Atkinson CT, LaPointe DA, Hart PJ, Spiegel CS, Tweed EJ, Henneman C, LeBrun J, Denette T, DeMots R, Kozar KL, Triglia D, Lease D, Gregor A, Smith T, Duffy D. Host population persistence in the face of introduced vector-borne diseases: Hawaii amakihi and avian malaria. Proc Natl Acad Sci U S A. 2005;102:1531–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zehtindjiev P, Ilieva M, Westerdahl H, Hansson B, Valkiūnas G, Bensch S. Dynamics of parasitaemia of malaria parasites in a naturally and experimentally infected migratory songbirds, the great reed warbler Acrocephalus arundinaceus. Exp Parasitol. 2008;119:99–110.

    Article  PubMed  Google Scholar 

  • Zehtindjiev P, Krizanauskiene A, Bensch S, Palinauskas V, Asghar M, Dimitrov D, Scebba S, Valkiūnas G. A new morphologically distinct avian malaria parasite that fails detection by established polymerase chain reaction-based protocols for amplification of the cytochrome b gene. J Parasitol. 2012;98:657–65.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Cornet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Cornet, S., Sorci, G. (2014). Avian Malaria Models of Disease. In: Hommel, M., Kremsner, P. (eds) Encyclopedia of Malaria. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8757-9_126-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8757-9_126-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-8757-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics