Advertisement

Calcium and Phosphorus Intake by Parenteral Nutrition in Preterm Infants

  • Luis Pereira-da-Silva
  • Israel Macedo
  • Maria Luísa Rosa
  • Kayla M. Bridges
Living reference work entry

Abstract

Very premature infants are at an increased risk for metabolic bone disease because they forego the last trimester of pregnancy, the period of greatest mineral accretion. Most of these infants cannot tolerate full enteral feedings within the first postnatal days or weeks, and nutrients including calcium and phosphorus need to be delivered by parenteral nutrition. The ongoing challenges for bone nutrition in preterm infants involve not only guaranteeing high concentrations of calcium and phosphorus in parenteral nutrition admixtures while maintaining their compatibility but also achieving an optimal skeletal mineralization with the large amounts of minerals delivered. The main factors promoting calcium and phosphorus compatibility in parenteral nutrition admixtures include low final pH and temperature to produce more monobasic phosphate, use of organic calcium and P salts, and final high amino acid concentration with the inclusion of cysteine.

Keywords

Preterm Infant Parenteral NutritionParenteral Nutrition Short Bowel Syndrome Calcium Gluconate Bone Mineral Apparent Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abrams SA. In utero physiology: role in nutrient delivery and fetal development for calcium, phosphorus, and vitamin D. Am J Clin Nutr. 2007;85:604S–7S.PubMedGoogle Scholar
  2. Allwood MC, Kearney MC. Compatibility and stability of additives in parenteral nutrition admixtures. Nutrition. 1998;14:697–706.PubMedCrossRefGoogle Scholar
  3. Atkinson SA, Tsang RC. Calcium, magnesium, phosphorus and vitamin D. In: Tsang RC, Uauy R, Zlotkin SH, Koletzko B, editors. Nutrition of the preterm infant. Cincinnati, Ohio: Digital Educational Publishing, Inc.; 2005. p. 245–75.Google Scholar
  4. Bouchoud L, Fonzo-Christe C, Sadeghipour F, et al. Maximizing calcium and phosphate content in neonatal parenteral nutrition solutions using organic calcium and phosphate salts. JPEN J Parenter Enteral Nutr. 2010;34:542–45.PubMedCrossRefGoogle Scholar
  5. Boullata JI, Gilbert K, Sacks G, Labossiere RJ, Crill C, Goday P, Kumpf VJ, Mattox TW, Plogsted S, Holcombe B, American Society for Parenteral and Enteral Nutrition. A.S.P.E.N. Clinical guidelines: parenteral nutrition ordering, order review, compounding, labeling, and dispensing. JPEN J Parenter Enteral Nutr. 2014;38:334–77.PubMedCrossRefGoogle Scholar
  6. Bozzetti V, Tagliabue P. Metabolic bone disease in preterm newborn: an update on nutritional issues. Ital J Pediatr. 2009;35:20.PubMedCentralPubMedCrossRefGoogle Scholar
  7. Chaieb SD, Chaumeil JC, Jebnoun S, et al. Calcium and phosphate compatibility and stability studies in different neonatal parenteral nutrition mixtures. Eur J Hosp Pharm Sci. 2006;12:35–40.Google Scholar
  8. Chaieb SD, Chaumeil JC, Jebnoun S, et al. Effect of high calcium and phosphate concentrations on the physicochemical properties of two lipid emulsions used as total parenteral nutrition for neonates. PDA J Pharm Sci Technol. 2009;63:27–41.PubMedGoogle Scholar
  9. Cole DE, Zlotkin SH. Increased sulfate as an etiological factor in the hypercalciuria associated with total parenteral nutrition. Am J Clin Nutr. 1983;37:108–13.PubMedGoogle Scholar
  10. Doellman D, Hadawa L, Bowe-Geddes LA, et al. Infiltration and extravasation: update on prevention and management. J Infus Nurs. 2009;32:203–11.PubMedCrossRefGoogle Scholar
  11. Driscoll DF. Compounding TPN admixtures: then and now. JPEN J Parenter Enteral Nutr. 2003;27:433–38.PubMedCrossRefGoogle Scholar
  12. Eggert LD, Rusho WJ, MacKay MW, et al. Calcium and phosphorus compatibility in parental nutrition solutions for neonates. Am J Hosp Pharm. 1982;39:49–53.PubMedGoogle Scholar
  13. ElHassan NO, Kaiser JR. Parenteral nutrition in the neonatal intensive care unit. NeoReviews. 2011;12:e130–40.CrossRefGoogle Scholar
  14. Fitzgerald KA, MacKay MW. Calcium and phosphate solubility in neonatal parenteral nutrient solutions containing TrophAmine. Am J Hosp Pharm. 1986;43:88–93.PubMedGoogle Scholar
  15. Gura KM. Is there still a role for peripheral parenteral nutrition? Nutr Clin Pract. 2009;24:709–17.PubMedCrossRefGoogle Scholar
  16. Hanning RM, Atkinson SA, Whyte RK. Efficacy of calcium glycerophosphate vs conventional mineral salts for total parenteral nutrition in low-birth-weight infants: a randomized clinical trial. Am J Clin Nutr. 1991;54:903–8.PubMedGoogle Scholar
  17. Harrison CM, Gibson AT. Osteopenia in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2013;98:F272–75.PubMedCrossRefGoogle Scholar
  18. Joy J, Silvestri AP, Franke R, et al. Calcium and phosphate compatibility in low-osmolarity parenteral nutrition admixtures intended for peripheral vein administration. JPEN J Parenter Enteral Nutr. 2010;34:46–54.PubMedCrossRefGoogle Scholar
  19. Koletzko B, Goulet O, Hunt J, et al. Guidelines on paediatric parenteral nutrition of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and the European Society for Clinical Nutrition and Metabolism (ESPEN), Supported by the European Society of Paediatric Research (ESPR). J Pediatr Gastroenterol Nutr. 2005;41 Suppl 2:S1–87.PubMedCrossRefGoogle Scholar
  20. Litmanovitz I, Dolfin T, Friedland O, et al. Early physical activity intervention prevents decrease of bone strength in very low birth weight infants. Pediatrics. 2003;112(1 Pt 1):15–9.PubMedCrossRefGoogle Scholar
  21. Magno AL, Ward BK, Ratajczak T. The calcium-sensing receptor: a molecular perspective. Endocr Rev. 2011;32:3–30.PubMedCrossRefGoogle Scholar
  22. Migaki EA, Melhart BJ, Dewar CJ, et al. Calcium chloride and sodium phosphate in neonatal parenteral nutrition containing TrophAmine: precipitation studies and aluminum content. JPEN J Parenter Enteral Nutr. 2012;36:470–75.PubMedCrossRefGoogle Scholar
  23. Mirtallo JM. Complications associated with drug and nutrient interactions. J Infus Nurs. 2004;27:19–24.PubMedCrossRefGoogle Scholar
  24. Mirtallo J, Canada T, Johnson D, et al. Safe practices for parenteral nutrition. JPEN J Parenter Enteral Nutr. 2004;28:S39–70.PubMedCrossRefGoogle Scholar
  25. Nehra D, Carlson SJ, Fallon EM, et al. A.S.P.E.N. Clinical guidelines: nutrition support of neonatal patients at risk for metabolic bone disease. JPEN J Parenter Enteral Nutr. 2013;37(5):570–98.PubMedCrossRefGoogle Scholar
  26. Newton DW, Driscoll DF. Calcium and phosphate compatibility: revisited again. Am J Health Syst Pharm. 2008a;65:73–80.PubMedCrossRefGoogle Scholar
  27. Newton DW, Driscoll DF. Chemistry and safety of phosphates injections. Am J Health Syst Pharm. 2008b;65:1761–66.PubMedCrossRefGoogle Scholar
  28. Niemiec Jr PW, Vanderveen TW. Compatibility considerations in parenteral nutrient solutions. Am J Hosp Pharm. 1984;41:893–911.PubMedGoogle Scholar
  29. Pelegano JF, Rowe JC, Carey DE, et al. Effect of calcium/phosphorus ratio on mineral retention in parenterally fed premature infants. J Pediatr Gastroenterol Nutr. 1991;12:351–55.PubMedCrossRefGoogle Scholar
  30. Pereira-da-Silva L, Nurmamodo A, Amaral JM, et al. Compatibility of calcium and phosphate in four parenteral nutrition solutions for preterm neonates. Am J Health Syst Pharm. 2003;60:1041–44.PubMedGoogle Scholar
  31. Pereira-da-Silva L, Virella D, Henriques G, et al. A simple equation to estimate the osmolarity of neonatal parenteral nutrition solutions. JPEN J Parenter Enteral Nutr. 2004;28:34–7.PubMedCrossRefGoogle Scholar
  32. Pereira-da-Silva L, Costa A, Pereira L, et al. Early high calcium and phosphorus intake by parenteral nutrition prevents short-term bone strength decline in preterm infants. J Pediatr Gastroenterol Nutr. 2011;52:203–9.PubMedCrossRefGoogle Scholar
  33. Prestridge LL, Schanler RJ, Shulman RJ, et al. Effect of parenteral calcium and phosphorus therapy on mineral retention and bone mineral content in very low birth weight infants. J Pediatr. 1993;122(5 Pt 1):761–68.PubMedCrossRefGoogle Scholar
  34. Prinzivalli M, Ceccarelli S. Sodium d-fructose-1,6-diphosphate vs. sodium monohydrogen phosphate in total parenteral nutrition: a comparative in vitro assessment of calcium phosphate compatibility. JPEN J Parenter Enteral Nutr. 1999;23:326–32.PubMedCrossRefGoogle Scholar
  35. Rauch F, Schoenau E. Skeletal development in premature infants: a review of bone physiology beyond nutritional aspects. Arch Dis Child Fetal Neonatal Ed. 2002;86:F82–5.PubMedCentralPubMedCrossRefGoogle Scholar
  36. Ribeiro DO, Lobo BW, Volpato NM, et al. Influence of the calcium concentration in the presence of organic phosphorus on the physicochemical compatibility and stability of all-in-one admixtures for neonatal use. Nutr J. 2009;8:51.PubMedCentralCrossRefGoogle Scholar
  37. Rigo J, Mohamed MW, De Curtis M. Disorders of calcium, phosphorus and magnesium metabolism. In: Martin RJ, Fanaroff AA, Walsh MC, editors. Fanaroff & Martin’s neonatal perinatal medicine: diseases of the fetus and infant. Missouri: Elsevier Mosby; 2011. p. 1523–56.Google Scholar
  38. Singh H, Dumas GJ, Silvestri AP, et al. Physical compatibility of neonatal total parenteral nutrition admixtures containing organic calcium and inorganic phosphate salts in a simulated infusion at 37 degrees C. Pediatr Crit Care Med. 2009;10:213–16.PubMedCrossRefGoogle Scholar
  39. Thompson JS, Rochling FA, Weseman RA, et al. Current management of short bowel syndrome. Curr Probl Surg. 2012;49:52–115.PubMedCrossRefGoogle Scholar
  40. Vachharajani AJ, Mathur AM, Rao R. Metabolic bone disease of prematurity. NeoReviews. 2009;10:e402–11.CrossRefGoogle Scholar
  41. Visser F, Sprij AJ, Brus F. The validity of biochemical markers in metabolic bone disease in preterm infants: a systematic review. Acta Paediatr. 2012;101:562–68.PubMedCrossRefGoogle Scholar
  42. Wong JC, McDougal AR, Tofan M, et al. Doubling calcium and phosphate concentrations in neonatal parenteral nutrition solutions using monobasic potassium phosphate. J Am Coll Nutr. 2006;25:70–7.PubMedCrossRefGoogle Scholar
  43. Wongpoowarak W, Apiromrak B, Wongpoowarak P, et al. Physicochemical transfer functions to predict zone of precipitation between calcium and phosphate in simplified parenteral nutrition. J Appl Pharm Sci. 2011;2:6–14.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Luis Pereira-da-Silva
    • 1
    • 2
  • Israel Macedo
    • 3
  • Maria Luísa Rosa
    • 4
  • Kayla M. Bridges
    • 5
  1. 1.NOVA Medical SchoolLisbonPortugal
  2. 2.NICUHospital Dona Estefânia, Centro Hospitalar de Lisboa CentralLisbonPortugal
  3. 3.NICUMaternidade Dr. Alfredo da Costa, Centro Hospitalar de Lisboa CentralLisbonPortugal
  4. 4.Pharmacy DepartmentHospital Dona Estefânia, Centro Hospitalar de Lisboa CentralLisbonPortugal
  5. 5.Neonatal Intensive Care UnitSt. John Providence Children’s HospitalDetroitUSA

Personalised recommendations