Skip to main content

Adaptive Likelihood Ratio Scans for the Detection of Space-Time Clusters

  • Living reference work entry
  • First Online:
Handbook of Scan Statistics
  • 371 Accesses

Abstract

This work presents a methodology to detect space-time clusters, based on adaptive likelihood ratios (ALRs), which preserves the martingale structure of the regular likelihood ratio. Monte Carlo simulations are not required to validate the procedure’s statistical significance, because the upper limit for the false alarm rate of the proposed method depends only on the quantity of evaluated cluster candidates, thus allowing the construction of a fast computational algorithm. The quantity of evaluated clusters is also significantly reduced, by using another adaptive scheme to prune many unpromising clusters, further increasing the computational speed. Performance is evaluated through simulations to measure the average detection delay and the probability of correct cluster detection. Applications for thyroid cancer in New Mexico and hanseniasis in children in the Brazilian Amazon are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Cançado A, Duarte A, Duczmal L, Ferreira S, Fonseca C, Gontijo E (2010) Penalized likelihood and multi-objective spatial scans for the detection and inference of irregular clusters. Int J Health Geogr 9:55

    Article  Google Scholar 

  • Duarte A, Cançado A, Duczmal L, Ferreira S (2010) Internal cohesion and geometric shape of spatial clusters. Environ Ecol Stat 17:203–229

    Article  MathSciNet  Google Scholar 

  • Duczmal LH, Assunção RM (2004) A simulated annealing strategy for the detection of arbitrary shaped spatial clusters. Comput Stat Data Anal 45:269–286

    Article  MATH  Google Scholar 

  • Duczmal L, Buckeridge DL (2006) A workflow spatial scan statistic. Stat Med 25:743–754

    Article  MathSciNet  Google Scholar 

  • Duczmal LH, Kulldorff M, Huang L (2006) Evaluation of spatial scan statistics for irregularly shaped clusters. J Comput Graph Stat 15(2):428–442

    Article  MathSciNet  Google Scholar 

  • Duczmal L, Cançado AL, Takahashi RH, Bessegato LF (2007) A genetic algorithm for irregularly shaped spatial scan statistics. Comput Stat Data Anal 52:43–52

    Article  MathSciNet  MATH  Google Scholar 

  • Duczmal LH, Cançado ALF, Takahashi RHC (2008) Geographic delineation of disease clusters through multi-objective optimization. J Comput Graph Stat 17:243–262

    Article  Google Scholar 

  • Duczmal L, Duarte AR, Tavares R (2009) Extensions of the scan statistic for the detection and inference of spatial clusters. In: Balakrishnan N, Glaz J (eds) Scan statistics. Birkhäuser, Basel. pp 157–182

    Google Scholar 

  • Duczmal LH, Moreira GJP, Burgarelli D, Takahashi RHC, Magalhães FCO, Bodevan EC (2011) Voronoi distance based prospective space-time scans for point data sets: a dengue fever cluster analysis in a southeast Brazilian town. Int J Health Geogr 10:29

    Article  Google Scholar 

  • Krieger AM, Moshe Pollak M, Yakir B (2003) Surveillance of a simple linear regression. JASA 98(462):456–469

    Article  MathSciNet  MATH  Google Scholar 

  • Kulldorff M (1997) A spatial scan statistic. Commun Stat Theory Methods 26:1481–1496

    Article  MathSciNet  MATH  Google Scholar 

  • Kulldorff M (2001) Prospective time periodic geographical disease surveillance using a scan statistic. J R Stat Soc A 164:61–72

    Article  MathSciNet  MATH  Google Scholar 

  • Kulldorff M, Huang L, Pickle L, Duczmal L (2006) An elliptic spatial scan statistic. Stat Med 25:3929–3943

    Article  MathSciNet  Google Scholar 

  • Lai TL (1995) Sequential change point detection in quality control and dynamical systems. J R Stat Soc A 57:613–658

    MATH  Google Scholar 

  • Lima MS (2011) Adaptive methods for the detection of space-time clusters. Ph.D. thesis, Universidade Federal de Minas Gerais

    Google Scholar 

  • Lima MS, Duczmal LH (2009) Endemic disease surveillance using Bayes factor. In: International society for disease surveillance eighth annual conference, Miami, EUA

    Google Scholar 

  • Lima MS, Duczmal LH (2012) Surveillance and detection of space-time clusters using adaptive Bayes factor. In: Bradley DG (eds) Cancer clusters. Series: cancer etiology, diagnosis and treatments. Nova Science Publishers. ISBN:978-1-61209-516-5

    Google Scholar 

  • Lima MS, Duczmal LH (2014) Adaptive likelihood ratio approaches for the detection of space-time disease clusters. Comput Stat Data Anal 77:352–370

    Article  MathSciNet  Google Scholar 

  • Lorden G, Pollak M (2005) Non-anticipating estimation applied to sequential analysis and change-point detection. Ann Stat 33:1422–1454

    Article  MATH  Google Scholar 

  • Marshall JB, Spitzner DJ, Woodall WH (2007) Use of the local knox statistic for prospective monitoring of disease occurrences in space and time. Stat Med 26:1576–1593

    Article  MathSciNet  Google Scholar 

  • Neill DB (2009) Expectation-based scan statistics for monitoring space-time clusters. Int J Forecast 25:498–517

    Article  Google Scholar 

  • Neill DB (2011) Fast Bayesian scan statistics for multivariate event detection and visualization. Stat Med 30(5):455–469

    Article  MathSciNet  Google Scholar 

  • Neill DB (2012) Fast subset scan for spatial pattern detection. J R Stat Soc B 74(2):337–360

    Article  MathSciNet  Google Scholar 

  • Page ES (1954) Continuous inspection schemes. Biometrika 41:100–115

    Article  MathSciNet  MATH  Google Scholar 

  • Patil GP, Taillie C (2004) Upper level set scan statistic for detecting arbitrarily shaped hotspots. Environ Ecol Stat 11:183–197

    Article  MathSciNet  Google Scholar 

  • Pavlov IV (2003) Sequential procedure of testing composite hypotheses with applications to the Kiefer-Weiss. Theory Prob Appl 35:280–292

    Article  MathSciNet  MATH  Google Scholar 

  • Pollak M (1987) Average run lengths of an optimal method of detecting a change in distribution. Ann Stat 15:749–779

    Article  MathSciNet  MATH  Google Scholar 

  • Porter DM (2007) Some adaptive approaches for space-time anomaly detection. In: First international workshop in sequential methodologies, IWSM, Boulder

    Google Scholar 

  • Roberts SW (1966) A comparison of some control chart procedures. Technometrics 8:411–430

    Article  MathSciNet  Google Scholar 

  • Rogerson PA (2001) Monitoring point patterns for the development of space-time clusters. J R Stat Soc A 164:87–96

    Article  MathSciNet  MATH  Google Scholar 

  • Sonesson C (2007) A CUSUM framework for detection of space time disease clusters using scan statistic. Stat Med 26:4770–4789

    Article  MathSciNet  Google Scholar 

  • Takahashi K, Kulldorff M, Tango T, Yin K (2008) A flexibly shaped space-time scan statistic for disease outbreak detection and monitoring. Int J Health Geogr 7:14

    Article  Google Scholar 

  • Tango T, Takahashi K (2005) A flexibly shaped spatial scan statistic for detecting clusters. Int J Health Geogr 4:11

    Article  Google Scholar 

  • Tango T, Takahashi K, Kohriyama K (2011) A space-time scan statistic for detecting emerging outbreaks. Biometrics 4:1–10

    MathSciNet  MATH  Google Scholar 

  • Tartakovsky AG, Rozovskii LR, Blazek RB, Kim H (2006) Detection of intrusions in information systems by sequential change-point methods. Stat Methodol 3:252–293

    Article  MathSciNet  MATH  Google Scholar 

  • West, M (1986) Bayesian model monitoring. J R Stat Soc B 48:70–78

    MathSciNet  MATH  Google Scholar 

  • Yiannakoulias N, Rosychuk R, Hodgson J (2007) Adaptations for finding irregularly shaped disease clusters. Int J Health Geograp 6:28

    Article  Google Scholar 

Download references

Acknowledgements

The authors were funded with grants from the Brazilian agencies CAPES, UFAM, CNPq, and FAPEMIG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max S. deLima .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this entry

Cite this entry

deLima, M.S., Duczmal, L.H. (2017). Adaptive Likelihood Ratio Scans for the Detection of Space-Time Clusters. In: Glaz, J., Koutras, M. (eds) Handbook of Scan Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8414-1_37-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8414-1_37-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8414-1

  • Online ISBN: 978-1-4614-8414-1

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics