Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Probabilistic Retrieval Models and Binary Independence Retrieval (BIR) Model

  • Thomas RoellekeEmail author
  • Jun Wang
  • Stephen Robertson
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_919


BIR model; Probabilistic model; RSJ model


Information retrieval (IR) systems aim to retrieve relevant documents while not retrieving non-relevant ones. This can be viewed as the foundation and justification of the binary independence retrieval (BIR) model, which proposes to base the ranking of documents on the division of the probability of relevance and non-relevance.

For a set r of relevant documents, and a set \( \overline{r} \)
This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Chaudhuri S, Das G, Hristidis V, Weikum G. Probabilistic ranking of database query results. In: Proceedings of the 30th International Conference on Very Large Data Bases; 2004. p. 888–99.CrossRefGoogle Scholar
  2. 2.
    Croft WB, Harper DJ. Using probabilistic models of document retrieval without relevance information. J Doc. 1979;35(4):285–95.CrossRefGoogle Scholar
  3. 3.
    Grossman DA, Frieder O. Information retrieval. Algorithms and heuristics. 2nd ed. The information retrieval series, vol. 15. Berlin:Springer; 2004.zbMATHCrossRefGoogle Scholar
  4. 4.
    Harper DJ, van Rijsbergen CJ. An evaluation of feedback in document retrieval using cooccurrence data. J Doc. 1978;34(3):189–216.CrossRefGoogle Scholar
  5. 5.
    Belew RK. Finding out about: Cambridge University Press; 2000.Google Scholar
  6. 6.
    van Rijsbergen CJ. Information Retrieval. 2nd ed. London: Butterworths; 1979. http://www.dcs.glasgow.ac.uk/Keith/Preface.htmlzbMATHGoogle Scholar
  7. 7.
    Robertson S. On event spaces and probabilistic models in information retrieval. Inform Retr J. 2005;8(2):319–29.CrossRefGoogle Scholar
  8. 8.
    Robertson SE. The probability ranking principle in IR. J Doc. 1977;33(4):294–304.CrossRefGoogle Scholar
  9. 9.
    Robertson SE. Understanding inverse document frequency: On theoretical arguments for idf. J Doc. 2004;60(5):503–20.CrossRefGoogle Scholar
  10. 10.
    Robertson SE, Sparck JK. Relevance weighting of search terms. J Am Soc Inf Sci. 1976;27(3):129–46.CrossRefGoogle Scholar
  11. 11.
    Robertson SE, Walker S. On relevance weights with little relevance information. In: Proceedings of the 20th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval; 1997. p. 16–24.Google Scholar
  12. 12.
    Roelleke T, Wang J. A parallel derivation of probabilistic information retrieval models. In: Proceedings of the 32nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval; 2009. p. 107–14.Google Scholar
  13. 13.
    de Vries A, Roelleke T. Relevance information: a loss of entropy but a gain for IDF? In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval; 2008. p. 282–9.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Queen Mary University of LondonLondonUK
  2. 2.Microsoft Research CambridgeCambridgeUK

Section editors and affiliations

  • Giambattista Amati
    • 1
  1. 1.Fondazione Ugo BordoniRomeItaly