Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Column Stores

  • Pingpeng YuanEmail author
  • Hai Jin
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_80783


Column-oriented DBMS; Columnar DBMS


A column store is a database powered with column-oriented storage and access mechanisms. At the conceptual schema level, a column store consists of multiple columns. Some related columns can be grouped to a column family. Furthermore, several column families can form a super column, which can be seen as a “view” on a number of tables [8]. Super column can also be viewed as a map of tables.

At physical storage level, a column store places all values of a column in a sequential order on a storage media, then the values of the next column, and so on. Storing data column by column makes it possible to retrieve data in a column without fetching other columns. The column-oriented approach is in contrast to row-oriented databases or row stores and can significantly speed up column-based access.

The column store is made popular by Google’s Bigtable [7], which is also considered as a column family store.

Historical Background

Column store...

This is a preview of subscription content, log in to check access.


  1. 1.
    Abadi DJ, Marcus A, Madden SR, Hollenbach K. Scalable semantic web data management using vertical partitioning. In: Proceedings of the 33rd International Conference on Very Large Data Bases; 2007. p. 411–22.Google Scholar
  2. 2.
    Abadi DJ, Madden SR, Hachem N. Column-stores vs. row-stores: how different are they really? In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 2008. p. 967–80.Google Scholar
  3. 3.
    Apache Cassandra. Cassandra. http://cassandra.apache.org/ (2015).
  4. 4.
    Apache HBase. Hbase. http://hbase.apache.org/ (2015).
  5. 5.
    Bjørklund TA, Gehrke J, Torbjørnsen Ø. A confluence of column stores and search engines: opportunities and challenges. In: Proceedings of the 35th International Conference on Very Large Data Bases; 2009. p. 1–12Google Scholar
  6. 6.
    Boncz P, Zukowski M, Nes N. Monetdb/x100: hyper-pipelining query execution. In: Proceedings of the 2nd Biennial Conference on Innovative Data Systems Research; 2005, p. 225–37.Google Scholar
  7. 7.
    Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A, Gruber RE. Bigtable: a distributed storage system for structured data. In: Proceedings of the 7th USENIX Symposium on Operating System Design and Implementation; 2006. p. 205–18.Google Scholar
  8. 8.
  9. 9.
    Copeland GP, Khoshafian SN. A decomposition storage model. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 1985. p. 268–79.Google Scholar
  10. 10.
    Halverson A, Beckmann JL, Naughton JF, DeWitt DJ. A comparison of C-store and row-store in a common framework. In: Proceedings of the 32nd International Conference on Very Large Data Bases; 2006. p. 553–64.Google Scholar
  11. 11.
    Hypertable. Hypertable. http://hypertable.org/ (2015).
  12. 12.
    Idreos S, Kersten ML, Manegold S. Self-organizing tuple reconstruction in column-stores. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 2009. p. 297–308.Google Scholar
  13. 13.
    Lamb A, Fuller M, Varadarajan R, Tran N, Vandiver B, Doshi L, Bear C. The vertica analytic database: C-store 7 years later. Proc VLDB Endowment. 2012;5(12):1790–801.CrossRefGoogle Scholar
  14. 14.
    Mohapatra A, Genesereth M. Incrementally maintaining run-length encoded attributes in column stores. In: Proceedings of the International Conference on Database Engineering and Applications; 2012. p. 146–54.Google Scholar
  15. 15.
    MonetDB. MonetDB, 2010. https://www.monetdb.org/Home.
  16. 16.
  17. 17.
    Sidirourgos L, Goncalves R, Kersten M, Nes N, Manegold S. Column-store support for RDF data management: not all swans are white. Proc VLDB Endowment. 2008;1(2):1553–63.CrossRefGoogle Scholar
  18. 18.
    Stonebraker M, Abadi DJ, Batkin A, Chen X, Cherniack M, Ferreira M, Lau E, Lin A, Madden S, ÓNeil E, ÓNeil P, Rasin A, Tran N, Zdonik S. C-store: a column-oriented DBMS. In: Proceedings of the 31st International Conference on Very Large Data Bases; 2005. p. 553–64.Google Scholar
  19. 19.
    Wikipedia. Column-oriented DBMS. https://en.wikipedia.org/wiki/Column-oriented_DBMS (2015).
  20. 20.
    Wikipedia. Greenplum. https://en.wikipedia.org/wiki/Greenplum (2015).
  21. 21.
    Wikipedia. Infinidb. https://en.wikipedia.org/wiki/InfiniDB (2015).
  22. 22.
    Wikipedia. Sap hana. https://en.wikipedia.org/wiki/SAP_HANA (2015).
  23. 23.
    Wikipedia. Vertica. https://en.wikipedia.org/wiki/Vertica (2015).
  24. 24.
    Yuan PP, Liu P, Wu BW, Liu L, Jin H, Zhang WY. TripleBit: a fast and compact system for large scale RDF data. Proc VLDB Endowment. 2013;6(7):517–28.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Service Computing Technology and System Lab, Cluster and Grid Computing Lab, School of Computer Science and TechnologyHuazhong University of Science and TechnologyWuhanChina