Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Recommender Systems

  • Mohamed SarwatEmail author
  • Mohamed F. Mokbel
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_80732


Recommendation engine


A recommender system (abbrv. RecSys) is a software artifact that suggests interesting items to users from a large pool of items. Let \(\mathcal {U}\)

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans Knowl Data Eng TKDE. 2005;17(6):734–49.CrossRefGoogle Scholar
  2. 2.
    Breese JS, Heckerman D, Kadie C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence; 1998.Google Scholar
  3. 3.
    Burke R. Hybrid recommender systems: survey and experiments. User Model User-Adap Inter. 2002;12(4):331–70.zbMATHCrossRefGoogle Scholar
  4. 4.
    Das A, Datar M, Garg A, Rajaram S. Google news personalization: scalable online collaborative filtering. In: Proceedings of the 16th International World Wide Web Conference; 2007.Google Scholar
  5. 5.
    Koren Y, Bell RM, Volinsky C. Matrix factorization techniques for recommender systems. IEEE Comput. 2009;42(8):30–7.CrossRefGoogle Scholar
  6. 6.
    Levandoski JJ, Sarwat M, Mokbel MF, Ekstrand MD. RecStore: an extensible and adaptive framework for online recommender queries inside the database engine. In: Proceedings of the 15th International Conference on Extending Database Technology; 2012.Google Scholar
  7. 7.
    Lops P, de Gemmis M, Semeraro G. Content-based recommender systems: state of the art and trends. In: Recommender systems handbook. Springer; 2011. p. 73–105. https://link.springer.com/book/10.1007/978-0-387-85820-3CrossRefGoogle Scholar
  8. 8.
    Miller BN, Alber I, Lam SK, Konstan JA, Riedl J. MovieLens unplugged: experiences with an occasionally connected recommender system. In: Proceedings of the International Conference on Intelligent User Interfaces; 2002.Google Scholar
  9. 9.
    Resnick P, Iacovou N, Suchak M, Bergstrom P, Riedl J. GroupLens: an open architecture for collaborative filtering of netnews. In: Proceedings of the ACM Conference on Computer Supported Cooperative Work; 1994.Google Scholar
  10. 10.
    Sarwar B, Karypis G, Konstan J, Riedl J. Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference; 2001.Google Scholar
  11. 11.
    Sarwat M, Avery J, Mokbel MF. RecDB in action: recommendation made easy in relational databases. Proc. VLDB Endow. 2013;6(12):1242–5.CrossRefGoogle Scholar
  12. 12.
    Sarwat M, Levandoski JJ, Eldawy A, Mokbel MF. LARS*: an efficient and scalable location-aware recommender system. IEEE Trans Knowl Data Eng. 2014;26(6):1384–99.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Computing, Informatics, and Decision Systems EngineeringArizona State UniversityTempeUSA
  2. 2.Department of Computer Science and EngineeringUniversity of Minnesota-Twin CitiesMinneapolisUSA