Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Stream Reasoning

  • Alessandra MileoEmail author
  • Minh Dao-Tran
  • Thomas Eiter
  • Michael Fink
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_80715


Continuous reasoning; Reactive reasoning


Stream reasoning refers to inference approaches and deduction mechanisms which are concerned with providing continuous inference capabilities over dynamic data. The paradigm shift from current batch-like approaches toward timely and scalable stream reasoning leverages the natural temporal order in data streams and applies windows-based processing to complex deduction tasks that go beyond continuous query processing such as those involving preferential reasoning, constraint optimization, planning, uncertainty, non-monotonicity, non-determinism, and solution enumeration.

Historical Background

We are witnessing an unprecedented shift in the available quantity and quality of data drawn from all aspects of our lives, opening tremendous new opportunities but also significant challenges for scalable decision analytics due to its dynamicity. This makes it harder to go from data to insightand support effective decision-making. Such...

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Valle ED, Ceri S, van Harmelen F, Fensel D. It’s a streaming world! Reasoning upon rapidly changing information. IEEE Intell Syst. 2009;24(6):83–9.CrossRefGoogle Scholar
  2. 2.
    Babcock B, Babu S, Datar M, Motwani R, Widom J. Models and issues in data stream systems. In: Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems; 2002. p. 1–16.Google Scholar
  3. 3.
    Arasu A, Babu S, Widom J. The CQL continuous query language: semantic foundations and query execution. VLDB J. 2006;15(2):121–42.CrossRefGoogle Scholar
  4. 4.
    Phuoc DL, Nguyen-Mau HQ, Parreira JX, Hauswirth M. A middleware framework for scalable management of linked streams. J Web Sem. 2012;16(Nov): 42–51.CrossRefGoogle Scholar
  5. 5.
    Phuoc DL, Dao-Tran M, Parreira JX, Hauswirth M. A native and adaptive approach for unified processing of linked streams and linked data. In: Proceedings of the 8th International Semantic Web Conference; 2011. p. 370–88.Google Scholar
  6. 6.
    Barbieri DF, Braga D, Ceri S, Valle ED, Grossniklaus M. C-SPARQL: a continuous query language for RDF data streams. Int J Semantic Comput. 2010;4(1): 3–25.zbMATHCrossRefGoogle Scholar
  7. 7.
    Wasserkrug S, Gal A, Etzion O, Turchin Y. Efficient processing of uncertain events in rule-based systems. IEEE Trans Knowl Data Eng. 2012;24(1);45–58.CrossRefGoogle Scholar
  8. 8.
    Cugola G, Margara A. Processing flows of information: from data stream to complex event processing. ACM Comput Surv. 2012;44(3):15:1–15:62.CrossRefGoogle Scholar
  9. 9.
    Valle ED, Schlobach S, Krötzsch M, Bozzon A, Ceri S, Horrocks I. Order matters! Harnessing a world of orderings for reasoning over massive data. Semantic Web. 2013;4(2):219–31.Google Scholar
  10. 10.
    Brewka G, Eiter T. Equilibria in heterogeneous nonmonotonic multi-context systems. In: Proceedings of the 22nd National Conference on Artificial Intelligence; 2007. p. 385–90.Google Scholar
  11. 11.
    Ghanem TM, Hammad MA, Mokbel MF, Aref WG, Elmagarmid AK. Incremental evaluation of sliding-window queries over data streams. IEEE Trans Knowl Data Eng. 2007;19(1):57–72.CrossRefGoogle Scholar
  12. 12.
    Tatbul N, Zdonik S. Window-aware load shedding for aggregation queries over data streams. In: Proceedings of the 32nd International Conference on Very Large Data Bases; 2006. p. 799–810.Google Scholar
  13. 13.
    Dantsin E, Eiter T, Gottlob G, Voronkov A. Complexity and expressive power of logic programming. ACM Comput Surv. 2001;33(3):374–425.CrossRefGoogle Scholar
  14. 14.
    Arasu A, Cherniack M, Galvez EF, Maier D, Maskey A, Ryvkina E, Stonebraker M, Tibbetts R. Linear road: a stream data management benchmark. In: Proceedings of the 30th International Conference on Very Large Data Bases; 2004. p. 480–91.Google Scholar
  15. 15.
    Phuoc DL, Dao-Tran M, Pham MD, Boncz PA, Eiter T, Fink M. Linked stream data processing engines: facts and figures. In: Proceedings of the 11th International Semantic Web Conference; 2012. p. 300–12.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Alessandra Mileo
    • 1
    Email author
  • Minh Dao-Tran
    • 2
  • Thomas Eiter
    • 2
  • Michael Fink
    • 2
  1. 1.Insight Centre for Data AnalyticsDublin City UniversityDublinIreland
  2. 2.Institute of Information SystemsVienna University of TechnologyViennaAustria