Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Semantic Streams

  • Manfred HauswirthEmail author
  • Danh Le Phuoc
  • Josiane Xavier Parreira
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_80605


Linked streams; RDF streams


A semantic stream S is an unbounded partially ordered set of tuples 〈G, τ〉 where G is a directed labeled graph that follows a semantic data model and the values of τ define a partial order among the tuples. In existing semantic stream models, stream elements are semantically annotated following the W3C Resource Description Framework (RDF) semantic data model, i.e., G is a set of RDF triples. Typical examples for τ would be integers (to define a simple ordering relationship, e.g., logical time), timestamps, coordinates, intervals, or combinations of those.

Historical Background

The heterogeneous nature of stream data sources makes accessing and managing their data a labor-intensive task, which currently requires a lot of manual programming and data integration. To remedy these issues, the RDF data model, based on its success for information integration on the Web, was investigated for its suitability for stream processing, as it enables...

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Bouillet E, Feblowitz M, Liu Z, Ranganathan A, Riabov A, Ye F. A semantics-based middleware for utilizing heterogeneous sensor networks. In: Aspnes J, Scheideler C, Arora A, Madden S, editors. Proceedings of the 3rd IEEE International Conference on Distributed Computing in Sensor Systems; 2007. p. 174–188.Google Scholar
  2. 2.
    Sheth A, Henson C, Sahoo SS. Semantic sensor web. IEEE Internet Comput. 2008;12(4):78–83.CrossRefGoogle Scholar
  3. 3.
    Whitehouse K, Zhao F, Liu J. Semantic streams: a framework for composable semantic interpretation of sensor data. In: Römer K, Karl H, Mattern F, editors. Proceedings of the 3rd European Workshop on Wireless Sensor Networks; 2006. p. 5–20.Google Scholar
  4. 4.
    Compton M, Barnaghi PM, Bermudez L, Garcia-Castro R, Corcho Ó, Cox S, et al. The SSN ontology of the W3C semantic sensor network incubator group. J Web Sem. 2012;17(Dec):25–32.CrossRefGoogle Scholar
  5. 5.
    The W3C RDF Stream Processing Community Group; [cited May 2014]. Available from: http://www.w3.org/community/rsp/.
  6. 6.
    Bolles A, Grawunder M, Jacobi J. Streaming SPARQL – extending SPARQL to process data streams. In: Bechhofer S, Hauswirth M, Hoffmann J, Koubarakis M, editors. Proceedings of the 5th European Semantic Web Conference on The Semantic Web: Research and Applications; 2008. p. 448–462.Google Scholar
  7. 7.
    Anicic D, Fodor P, Rudolph S, Stojanovic N. EP-SPARQL: a unified language for event processing and stream reasoning. In: Srinivasan S, Ramamritham K, Kumar A, Ravindra MP, Bertino E, Kumar R, editors. Proceedings of the 20th International Conference on World Wide Web; 2011. p. 635–44.Google Scholar
  8. 8.
    Barbieri DF, Braga D, Ceri S, Grossniklaus M. An execution environment for C-SPARQL queries. In: Manolescu I, Spaccapietra S, Teubner J, Kitsuregawa M, Léger A, Naumann F, et al., editors. Proceedings of the 13th International Conference on Extending Database Technology; 2010. p. 441–52.Google Scholar
  9. 9.
    Calbimonte JP, Corcho Ó, Gray AJG. Enabling ontology-based access to streaming data sources. In: Patel-Schneider PF, Pan Y, Hitzler P, Mika P, Zhang L, Pan JZ, et al., editors. Proceedings of the 9th International Semantic Web Conference on the Semantic Web; 2010. p. 96–111.Google Scholar
  10. 10.
    Phuoc DL, Dao-Tran M, Parreira JX, Hauswirth M. A native and adaptive approach for unified processing of linked streams and linked data. In: Aroyo L, Welty C, Alani H, Taylor J, Bernstein A, Kagal L, et al., editors. Proceedings of the 10th International Semantic Web Conference; 2011. p. 370–88.Google Scholar
  11. 11.
    Arasu A, Babu S, Widom J. The CQL continuous query language: semantic foundations and query execution. The VLDB J. 2006;15(2):121–42.CrossRefGoogle Scholar
  12. 12.
    Zhang Y, Duc PM, Corcho O, Calbimonte JP. SRBench: a streaming RDF/SPARQL benchmark. In: Cudré-Mauroux P, Heflin J, Sirin E, Tudorache T, Euzenat J, Hauswirth M, et al., editors. Proceedings of the 11th International Conference on The Semantic Web; 2012. p. 641–57. Available from: https://doi.org/10.1007/978-3-642-35176-1_40.CrossRefGoogle Scholar
  13. 13.
    Phuoc DL, Dao-Tran M, Pham MD, Boncz PA, Eiter T, Fink M. Linked stream data processing engines: facts and figures. In: Cudré-Mauroux P, Heflin J, Sirin E, Tudorache T, Euzenat J, Hauswirth M, et al., editors. Proceedings of the 11th International Semantic Web Conference; 2012. p. 300–12.Google Scholar
  14. 14.
    Dell’Aglio D, Calbimonte JP, Balduini M, Corcho Ó, Valle ED. On correctness in RDF stream processor benchmarking. In: Alani H, Kagal L, Fokoue A, Groth PT, Biemann C, Parreira JX, et al., editors. Proceedings of the 12th International Semantic Web Conference; 2013. p. 326–42.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Manfred Hauswirth
    • 1
    • 2
    Email author
  • Danh Le Phuoc
    • 1
  • Josiane Xavier Parreira
    • 3
  1. 1.Open Distributed SystemsTechnical University of BerlinBerlinGermany
  2. 2.Fraunhofer FOKUSGalwayGermany
  3. 3.Siemens AGGalwayAustria