Skip to main content

Spatiotemporal Interpolation Algorithms

  • Reference work entry
  • First Online:
Encyclopedia of Database Systems
  • 13 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 6,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  1. Davis PJ. Interpolation and approximation. Mineola: Dover; 1975.

    MATH  Google Scholar 

  2. Güting R, Schneider M. Moving objects databases. Los Altos: Morgan Kaufmann; 2005.

    MATH  Google Scholar 

  3. Revesz PZ. Introduction to databases: from spatio-temporal to biological. New York: Springer; 2010.

    Book  MATH  Google Scholar 

  4. Li L, Revesz PZ. Interpolation methods for spatiotemporal geographic data. J Comput Environ Urban Syst. 2004;28(3):201–27.

    Article  Google Scholar 

  5. Gao J, Revesz P. Adaptive spatiotemporal interpolation methods. In: Proceedings of the 1st International Conference on Geometric Modeling, Visualization, and Graphics; 2005. p. 1622–5.

    Google Scholar 

  6. Hadjieleftheriou M, Kollios G, Tsotras VJ, Gunopulos D. Efficient indexing of spatiotemporal objects. In: Advances in Database Technology, Proceedings of the 8th International Conference on Extending Database Technology; 2002. p. 251–68.

    Chapter  Google Scholar 

  7. Koubarakis M, Sellis TK, Frank AU, Grumbach S, Güting RH, Jensen CS, Lorentzos NA, Manolopoulos Y, Nardelli E, Pernici B, Schek H-J, Scholl M, Theodoulidis B, Tryfona N, editors. Spatio-temporal databases: the CHOROCHRONOS approach, LNCS 2520. Berlin/New York: Springer; 2003.

    MATH  Google Scholar 

  8. Ni J, Ravishankar CV. Indexing spatio-temporal trajectories with efficient polynomial approximations. IEEE Trans Knowl Data Eng. 2007;19(5):663–78.

    Article  Google Scholar 

  9. Yu B, Kim SH, Bailey T, Gamboa R. Curve-based representation of moving object trajectories. In: Proceedings of the 8th International Database Engineering and Applications Symposium; 2004. p. 419–25.

    Google Scholar 

  10. Shepard DA. A two-dimensional interpolation function for irregularly spaced data. In: Proceedings of the 23rd ACM National Conference; 1968. p. 517–24.

    Google Scholar 

  11. Kuijpers B, Othman W. Trajectory databases: data models, uncertainty and complete query languages. In: Proceedings of the 11th International Conference on Database Theory; 2007. p. 224–38.

    Google Scholar 

  12. Pfoser D, Jensen C.S. Capturing the uncertainty of moving-object representations. In: Proceedings of the 6th International Symposium on Advances in Spatial Databases; 1999. p. 111–32.

    Chapter  Google Scholar 

  13. Trajcevski G, Wolfson O, Zhang F, Chamberlain S. The geometry of uncertainty in moving objects databases. In: Advances in Database Technology, Proceedings of the 8th International Conference on Extending Database Technology; 2002. p. 233–50.

    Chapter  MATH  Google Scholar 

  14. Revesz PZ, Wu S. Spatiotemporal reasoning about epidemiological data. Artif Intell Med. 2006;38(2):157–70.

    Article  Google Scholar 

  15. Li L, Zhang X, Holt JB, Tian J, Piltner R. Estimating population exposure to fine particulate matter in the conterminous U.S. using shape function-based spatiotemporal interpolation method: a county level analysis. Int J Comput. 2012;1(4):24–30.

    Google Scholar 

  16. Li L, Zhang X, Piltner R. A spatiotemporal database for ozone in the conterminous U.S. In: Proceedings of the 13th International Symposium on Temporal Representation and Reasoning, Budapest Hungary; 2006. p. 168–76.

    Google Scholar 

  17. Li L, Zhang X, Piltner R. An application of the shape function based spatiotemporal interpolation method on ozone and population exposure in the contiguous U.S. J Environ Inf. 2008;12(2):120–8.

    Article  Google Scholar 

  18. Losser T, Li L, Piltner R. A spatiotemporal interpolation method using radial basis functions for geospatiotemporal big data. In: Proceedings of the 5th International Conference on Computing for Geospatial Research and Application; 2014.

    Google Scholar 

  19. Gao J, Revesz P. Voting prediction using new spatiotemporal interpolation methods. In: Proceedings of the 7th International Conference on Digital Government Research; 2006. p. 293–300.

    Google Scholar 

  20. Kanellakis PC, Kuper GM, Revesz PZ. Constraint query languages. J Comput Syst Sci. 1995;51(1):26–52.

    Article  MathSciNet  Google Scholar 

  21. Grumbach S, Rigaux P, Segoufin L. Manipulating interpolated data is easier than you thought. In: Proceedings of the 26th International Conference on Very Large Data Bases; 2000. p. 156–65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Revesz .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Revesz, P. (2018). Spatiotemporal Interpolation Algorithms. In: Liu, L., Özsu, M.T. (eds) Encyclopedia of Database Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8265-9_803

Download citation

Publish with us

Policies and ethics