Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Spatiotemporal Interpolation Algorithms

  • Peter ReveszEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_803


Moving objects interpolation; Spatiotemporal approximation; Spatiotemporal estimation


Spatiotemporal interpolation is the problem of estimating the unknown values of some property at arbitrary spatial locations and times, using the known values at spatial locations and times where measurements were made. In spatiotemporal interpolation the estimated property varies with both space and time, with the assumption that the values are closer to each other with decreasing spatial and temporal distances.

Spatiotemporal interpolation is used in spatiotemporal databases, which record spatial locations and time instances together with other attributes that are dependent on space and time. For example, a spatiotemporal database may record the sales of houses in a town. The house sales database records the location, usually as the address of the house from which an (x, y) location can be easily found, by correlating the address with a map of the town, the calendar date when...

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Davis PJ. Interpolation and approximation. Mineola: Dover; 1975.zbMATHGoogle Scholar
  2. 2.
    Güting R, Schneider M. Moving objects databases. Los Altos: Morgan Kaufmann; 2005.zbMATHGoogle Scholar
  3. 3.
    Revesz PZ. Introduction to databases: from spatio-temporal to biological. New York: Springer; 2010.zbMATHCrossRefGoogle Scholar
  4. 4.
    Li L, Revesz PZ. Interpolation methods for spatiotemporal geographic data. J Comput Environ Urban Syst. 2004;28(3):201–27.CrossRefGoogle Scholar
  5. 5.
    Gao J, Revesz P. Adaptive spatiotemporal interpolation methods. In: Proceedings of the 1st International Conference on Geometric Modeling, Visualization, and Graphics; 2005. p. 1622–5.Google Scholar
  6. 6.
    Hadjieleftheriou M, Kollios G, Tsotras VJ, Gunopulos D. Efficient indexing of spatiotemporal objects. In: Advances in Database Technology, Proceedings of the 8th International Conference on Extending Database Technology; 2002. p. 251–68.CrossRefGoogle Scholar
  7. 7.
    Koubarakis M, Sellis TK, Frank AU, Grumbach S, Güting RH, Jensen CS, Lorentzos NA, Manolopoulos Y, Nardelli E, Pernici B, Schek H-J, Scholl M, Theodoulidis B, Tryfona N, editors. Spatio-temporal databases: the CHOROCHRONOS approach, LNCS 2520. Berlin/New York: Springer; 2003.zbMATHGoogle Scholar
  8. 8.
    Ni J, Ravishankar CV. Indexing spatio-temporal trajectories with efficient polynomial approximations. IEEE Trans Knowl Data Eng. 2007;19(5):663–78.CrossRefGoogle Scholar
  9. 9.
    Yu B, Kim SH, Bailey T, Gamboa R. Curve-based representation of moving object trajectories. In: Proceedings of the 8th International Database Engineering and Applications Symposium; 2004. p. 419–25.Google Scholar
  10. 10.
    Shepard DA. A two-dimensional interpolation function for irregularly spaced data. In: Proceedings of the 23rd ACM National Conference; 1968. p. 517–24.Google Scholar
  11. 11.
    Kuijpers B, Othman W. Trajectory databases: data models, uncertainty and complete query languages. In: Proceedings of the 11th International Conference on Database Theory; 2007. p. 224–38.Google Scholar
  12. 12.
    Pfoser D, Jensen C.S. Capturing the uncertainty of moving-object representations. In: Proceedings of the 6th International Symposium on Advances in Spatial Databases; 1999. p. 111–32.CrossRefGoogle Scholar
  13. 13.
    Trajcevski G, Wolfson O, Zhang F, Chamberlain S. The geometry of uncertainty in moving objects databases. In: Advances in Database Technology, Proceedings of the 8th International Conference on Extending Database Technology; 2002. p. 233–50.zbMATHCrossRefGoogle Scholar
  14. 14.
    Revesz PZ, Wu S. Spatiotemporal reasoning about epidemiological data. Artif Intell Med. 2006;38(2):157–70.CrossRefGoogle Scholar
  15. 15.
    Li L, Zhang X, Holt JB, Tian J, Piltner R. Estimating population exposure to fine particulate matter in the conterminous U.S. using shape function-based spatiotemporal interpolation method: a county level analysis. Int J Comput. 2012;1(4):24–30.Google Scholar
  16. 16.
    Li L, Zhang X, Piltner R. A spatiotemporal database for ozone in the conterminous U.S. In: Proceedings of the 13th International Symposium on Temporal Representation and Reasoning, Budapest Hungary; 2006. p. 168–76.Google Scholar
  17. 17.
    Li L, Zhang X, Piltner R. An application of the shape function based spatiotemporal interpolation method on ozone and population exposure in the contiguous U.S. J Environ Inf. 2008;12(2):120–8.CrossRefGoogle Scholar
  18. 18.
    Losser T, Li L, Piltner R. A spatiotemporal interpolation method using radial basis functions for geospatiotemporal big data. In: Proceedings of the 5th International Conference on Computing for Geospatial Research and Application; 2014.Google Scholar
  19. 19.
    Gao J, Revesz P. Voting prediction using new spatiotemporal interpolation methods. In: Proceedings of the 7th International Conference on Digital Government Research; 2006. p. 293–300.Google Scholar
  20. 20.
    Kanellakis PC, Kuper GM, Revesz PZ. Constraint query languages. J Comput Syst Sci. 1995;51(1):26–52.MathSciNetCrossRefGoogle Scholar
  21. 21.
    Grumbach S, Rigaux P, Segoufin L. Manipulating interpolated data is easier than you thought. In: Proceedings of the 26th International Conference on Very Large Data Bases; 2000. p. 156–65.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Nebraska-LincolnLincolnUSA

Section editors and affiliations

  • Dimitris Papadias
    • 1
  1. 1.Dept. of Computer Science and Eng.Hong Kong Univ. of Science and TechnologyKowloonHong Kong SAR