Skip to main content

Compression of Mobile Location Data

  • Reference work entry
  • First Online:
  • 25 Accesses

Synonyms

Location sensing and compression; Spatiotemporal data reduction

Definition

Miniaturization of computing, sending, and networking devices has provided the technological foundation for applications which generate huge volumes of location-in-time data – order of petabytes (PB) annually from smart phones alone [12]. In moving objects databases (MOD) [9], the data pertaining to the whereabouts of a given mobile object is commonly represented as a sequence of (location, time) points, ordered by the temporal dimension. Depending on the application’s settings, such points may be obtained by different means, e.g., an onboard GPS-based system, RFID sensors, roadside sensors [18], base stations in a cellular architecture, etc. The main motivation for compressing the location data of a given (collection of) moving object(s) is twofold: (1) Reducing the storage requirements, in addition to smart phones [12], location samples from onboard GPS devices taken once every 5 s, can still...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   6,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alt H, Guibas L. Discrete geometric shapes: matching, interpolation, and approximation. In: Handbook of computational geometry. Elsevier Science Publishers; 1999.

    MATH  Google Scholar 

  2. Alt A, Knauer C, Wenk C. Comparison of distance measures for planar curves. Algorithmica. 2004;38.

    Article  MathSciNet  MATH  Google Scholar 

  3. Barequet G, Chen DZ, Deascu O, Goodrich MT, Snoeyink J. Efficiently approximating polygonal path in three and higher dimensions. Algorithmica. 2002;33(2):150–167.

    Article  MathSciNet  MATH  Google Scholar 

  4. Cao H, Wolfson O, Trajcevski G. Spatio-temporal data reduction with deterministic error bounds. VLDB J. 2006;15(3):211–28.

    Article  Google Scholar 

  5. Chan W, Chin F. Approximation of polygonal curves with minimum number of line segments or minimal error. Int J Comput Geom Appl. 1996;6(1): 59–77.

    Article  MATH  Google Scholar 

  6. Douglas D, Peucker T. Algorithms for the reduction of the number of points required to represent a digitised line or its caricature. Can Cartogr. 1973;10(2):112–22.

    Article  Google Scholar 

  7. Faraway JJ, Reed MP, Wang J. Modelling three-dimensional trajectories by using Bézier curves with application to hand motion. Appl Stat. 2007;56(5):571–85.

    Google Scholar 

  8. Ghica O, Trajcevski G, Wolfson O, Buy U, Scheuermann P, Zhou F, Vaccaro D. Trajectory data reduction in wireless sensor networks. IJNGC. 2010;1(1): 28–51.

    Google Scholar 

  9. Güting RH, Schneider M. Moving objects databases. San Francisco: Morgan Kaufmann; 2005.

    MATH  Google Scholar 

  10. Hershberger J, Snoeyink J. Speeding up the Douglas-Peuker line-simplification algorithm. In: Proceedings of the 5th International Symposium on Spatial Data Handling; 1992.

    Google Scholar 

  11. Jensen CS, Lin D, Ooi BC. Continuous clustering of moving objects. IEEE Trans Knowl Data Eng. 2007;19(9):1161–1174.

    Article  Google Scholar 

  12. Mc Kansey Global Institute. Big data: the next frontier for innovation, competition, and productivity; 2011.

    Google Scholar 

  13. Popa IS, Zeitouni K, Oria V, Kharrat A. Spatio-temporal compression of trajectories in road networks. GeoInformatica. 2014. https://doi.org.10.1007/s10707-014-0208-4.

    Google Scholar 

  14. Sayood K. Introduction to data compression. San Francisco: Morgan Kaufmann; 1996.

    MATH  Google Scholar 

  15. Schiller J, Voisard A. Location-based services. San Francisco: Morgan Kaufmann; 2004.

    Google Scholar 

  16. Trajcevski G, Wolfson O, Hinrichs K, Chamberlain S. Managing uncertainty in moving objects databases. ACM Trans Database Syst. 2004;29(3):463–507.

    Article  Google Scholar 

  17. Trajcevski G, Cao H, Wolfson O, Scheuermann P, Vaccaro D. On-line data reduction and the quality of history in moving objects databases. In: Proceedings of the 5th ACM International Workshop on Data Engineering for Wireless and Mobile Access; 2006.

    Google Scholar 

  18. Turner-Fairbank Highway Research Center. Traffic detector handbook, vol. I. 3rd ed. McLean: U.S. Department of transportation; 2006.

    Google Scholar 

  19. Vlachos M, Hadjielefteriou M, Gunopulos D, Keogh E. Indexing multidimensional time-series. VLDB J. 2006;15(1):1–20.

    Article  Google Scholar 

  20. Weibel R. Generalization of spatial data: principles and selected algorithms. In: Algorithmic foundations of geographic information systems. LNCS. Springer; 1998.

    Google Scholar 

  21. Wolfson O, Sistla AP, Chamberlain S, Yesha Y. Updating and querying databases that track mobile units. Distrib Parallel Databases. 1999;7(3):257–88.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goce Trajcevski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Trajcevski, G., Wolfson, O., Scheuermann, P. (2018). Compression of Mobile Location Data. In: Liu, L., Özsu, M.T. (eds) Encyclopedia of Database Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8265-9_73

Download citation

Publish with us

Policies and ethics