Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Topological Relationships

  • Paolino Di FeliceEmail author
  • Eliseo Clementini
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_432


Topological relationships describe qualitative properties that characterize the relative position of spatial objects. Disjoint, meet, overlap, and inside are few examples (Fig. 1).
This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Clementini E, Di Felice P. A model for representing topological relationships between complex geometric features in spatial databases. Inf Sci. 1996;90(1–4):121–36.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Clementini E, Di Felice P, van Oosterom P. A small set of formal topological relationships suitable for end-user interaction. In: Proceedings of the 3rd International Symposium on Advances in Spatial Databases; 1993. p. 277–95.CrossRefGoogle Scholar
  3. 3.
    Cohn AG, Bennett B, Gooday J, Gotts N. RCC: a calculus for region based qualitative spatial reasoning. GeoInformatica. 1997;1:275–316.CrossRefGoogle Scholar
  4. 4.
    Egenhofer MJ, Franzosa R. Point-set topological spatial relations. Int J Geogr Inf Syst. 1991;5(2):161–74.CrossRefGoogle Scholar
  5. 5.
    Egenhofer MJ., Herring J. Categorizing binary topological relationships between regions, lines, and points in geographic databases. Technical report. Department of Surveying Engineering, University of Maine. 1991.Google Scholar
  6. 6.
    Gaal S. Point set topology. New York: Academic; 1964.zbMATHGoogle Scholar
  7. 7.
    IBM DB2. Spatial extender user’s guide and reference (Vers. 8). 2004.Google Scholar
  8. 8.
    Open Geospatial Consortium. OpenGIS simple features specification for SQL. OpenGIS Project Document, 99-049. 1999.Google Scholar
  9. 9.
    Pauly A, Schneider M. Topological predicates between vague spatial objects. In: Proceedings of the 9th International Symposium on Advances in Spatial and Temporal Databases; 2005. p. 418–32.CrossRefGoogle Scholar
  10. 10.
    Praing R, Schneider M Efficient implementation techniques for topological predicates on complex spatial objects. GeoInformatica. 2008;12(3):313–56.CrossRefGoogle Scholar
  11. 11.
    Schneider M, Behr T. Topological relationships between complex spatial objects. ACM Trans Database Syst. 2006;31(1):39–81.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of L’AguilaL’AguilaItaly

Section editors and affiliations

  • Ralf Hartmut Güting
    • 1
  1. 1.Fakultät für Mathematik und InformatikFernuniversität HagenHagenGermany