Skip to main content

Temporal Granularity

  • Reference work entry
  • First Online:
  • 15 Accesses

Synonyms

Temporal type; Time granularity

Definition

In the context of databases, a temporal granularity can be used to specify the temporal qualification of a set of data, similar to its use in the temporal qualification of statements in natural languages. For example, in a relational database, the timestamp associated with an attribute value or a tuple may be interpreted as associating that data with one or more granules of a given temporal granularity (e.g., one or more days). As opposed to using instants from a system-specific time domain, the use of user-defined granularities enables both more compact representations and temporal qualifications at different levels of abstraction. Temporal granularities include very common ones like hours, days, weeks, months, and years, as well as the evolution and specialization of these granularities for specific contexts or applications: trading days, banking days, academic semesters, etc. Intuitively, a temporal granularity is defined by...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   6,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Recommended Reading

  1. Bettini C, Dyreson CE, Evans WS, Snodgrass RT, Wang X. A glossary of time granularity concepts. In: Etzion O, Jajodia S, Sripada S, editors. Temporal databases: research and practice. Berlin: Springer; 1998. p. 406–13.

    Chapter  Google Scholar 

  2. Bettini C, Mascetti S, Wang X. Supporting temporal reasoning by mapping calendar expressions to minimal periodic sets. J Artif Intell Res. 2007;28(1):299–348.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bettini C, Wang XS, Jajodia S. Time granularities in databases, data mining, and temporal reasoning. Berlin: Springer; 2000.

    Book  MATH  Google Scholar 

  4. Chandra R, Segev A, Stonebraker M. Implementing calendars and temporal rules in next generation databases. In: Proceedings of the 10th International Conference on Data Engineering; 1994. p. 264–73.

    Google Scholar 

  5. Clifford J, Rao A. A simple, general structure for temporal domains. In: Proceedings of the IFIP TC 8/WG 8.1 Working Conference on Temporal Aspects in Information Systems; 1987. p. 23–30.

    Google Scholar 

  6. Combi C, Franceschet M, Peron A. Representing and reasoning about temporal granularities. J Logic Comput. 2004;14(1):51–77.

    Article  MathSciNet  MATH  Google Scholar 

  7. Dal Lago U, Montanari A, Puppis G. Compact and tractable automaton-based representations of time granularities. Theor Comput Sci. 2007;373 (1–2):115–41.

    Article  MathSciNet  MATH  Google Scholar 

  8. Euzenat J, Montanari A. Time granularity. In: Fisher M, Gabbay D, Vila L, editors. Handbook of temporal reasoning in artificial intelligence. Amsterdam: Elsevier; 2005.

    Google Scholar 

  9. Ladkin P. The completeness of a natural system for reasoning with time intervals. In: Proceedings of the 10th International Joint Conference on AI; 1987. p. 462–7.

    Google Scholar 

  10. Leban B, McDonald D, Forster D. A representation for collections of temporal intervals. In: Proceedings of the 5th National Conference on Artificial Intelligence; 1986. p. 367–71.

    Google Scholar 

  11. Lorentzos NA. DBMS support for nonmetric measurement systems. IEEE Trans Knowl Data Eng. 1994;6(6):945–53.

    Article  Google Scholar 

  12. Urgun B, Dyreson CE, Snodgrass RT, Miller JK, Kline N, Soo MD, Jensen CS. Integrating multiple calendars using tau-ZAMAN. Software Pract Exp. 2007;37(3):267–308.

    Article  Google Scholar 

  13. Wang X, Jajodia S, Subrahmanian VS. Temporal modules: an approach toward federated temporal databases. Inf Sci. 1995;82(1–2):103–28.

    Article  Google Scholar 

  14. Weiderhold G, Jajodia S, Litwin W. Integrating temporal data in a heterogeneous environment. In: Temporal databases: theory, design, and implementation; Redwood City: Benjamin/Cummings; 1993. p. 563–79.

    Google Scholar 

  15. Wijsen J. A string-based model for infinite granularities. In: Spatial and Temporal Granularity: Papers from the AAAI Workshop. AAAI Technical Report WS-00-08, AAAI; 2000. p. 9–16.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Bettini .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bettini, C., Wang, X.S., Jajodia, S. (2018). Temporal Granularity. In: Liu, L., Özsu, M.T. (eds) Encyclopedia of Database Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8265-9_397

Download citation

Publish with us

Policies and ethics